全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
热力发电  2015 

支持向量机理论与遗传算法相结合的300mw机组锅炉多目标燃烧优化

, PP. 91-96

Keywords: 燃煤锅炉,多目标,燃烧优化,支持向量机,遗传算法,燃尽风,煤耗率,nox排放

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高电站锅炉燃烧的经济性并尽可能降低no??x?排放量,以煤耗率和nox生成量最小为目标,运用支持向量机算法建立了某亚临界300mw机组烟煤锅炉的煤耗率和nox生成量预测模型,并结合该机组的实际运行数据,对所建模型的准确性进行了验证。将建立的煤耗率和nox生成量模型进行耦合,生成锅炉燃烧优化模型,并将煤耗率和no??x?生成量综合作为优化目标,建立目标函数,应用遗传算法寻找锅炉的最优运行方案。结果表明:基于支持向量机算法建立的锅炉燃烧模型对锅炉煤耗率和nox生成量具有较高的预测能力;增加燃尽风量可降低nox生成量,但同时会提高煤耗率,为优化运行,应将同时降低煤耗率和nox生成量综合作为优化目标;对于该亚临界300mw机组烟煤锅炉,满负荷运行时机组经济性较好,且nox生成量最低,其他负荷下,一、二次风比例和各层二次风挡板开度在某特定值时机组经济性和nox排放可达到最佳情况。

References

[1]  吕玉坤,彭鑫,赵锴.电站锅炉热效率和no��x�排放混合建模与优化[j].中国电机工程学报,2011,31(26):16-22.lvyukun,pengxin,zhaokai.hybridmodelingoptimizationofthermalefficiencyandnoxemissionofutilityboiler[j].proceedingsofthecsee,2011,31(26):16-22.
[2]  苏洪亮.350mww型火焰锅炉多目标在线优化系统研究[d].保定:华北电力大学,2014.suhonglaing.researchononlinemulti�objectivecombustionoptimizationsystemof350mww-flameboiler[d].baoding:northchinaelectricpoweruniversity,2014.
[3]  顾燕萍,赵文杰,吴占松.基于最小二乘支持向量机的电站锅炉燃烧优化[j].中国电机工程学报,2010,30(17):91-97.guyanping,zhaowenjie,wuzhansong.combustionoptimizationforutilityboilerbasedonleastsquare-supportvectormachine[j].proceedingsofthecsee,2010,30(17):91-97.
[4]  zhouh,qinxp,cenkf,etal.optimizingpulverizedcoalcombustionperformancebaseonannandga[j].fuelprocessingtechnology,2004,85(2):113-124.
[5]  张毅,丁艳军,张鸿泉,等.环保与经济相协调的锅炉运行优化控制[j].动力工程,2005,25(5):676-679.zhangyi,dingyanjun,zhanghongquan.studyonoptimizedboileroperationcontrolforharmonizedcoordinationbetweeneconomicefficiencyandenvironmentalprotection[j].journalofchinesesocietyofpowerengineering,2005,25(5):676-679.
[6]  张林,李阳春.锅炉燃烧优化系统的应用探讨[j].热力发电,2009,38(1):54-55.zhanglin,liyangchun.anapproachtoapplicationofcombustionoptimazingsystemontoboilers[j].thermalpowergeneration,2009,38(1):54-55.
[7]  师建斌,严道一.锅炉燃烧优化指导系统在火电厂的应用[j].中国电力,1997,30(7):31-35.shijianbin,yandaoyi.applicationofguidingsystemforoptimizingboilercombustioninfossil�firedpowerplant[j].electricpower,1997,30(7):31-35.
[8]  苏宏亮,阎维平,高正阳,等.350mw机组w火焰锅炉燃烧优化试验与性能预测[j].热力发电,2014,43(3):30-36.suhongliang,yanweiping,gaozhengyang,etal.combustionoptimizationtestandperformancepredictionfora350mwunitw-flameboiler[j].thermalpowergeneration,2014,43(3):30-36.
[9]  阎维平.洁净煤发电技术[m].2版.北京:中国电力出版社,2008.yanweiping.cleancoalpowergenerationtechnology[m].2nded.beijing:chinaelectricpowerpress,2008(inchinese).
[10]  周昊,朱洪波,岑可法.基于人工神经网络和遗传算法的火电厂锅炉实时燃烧优化系统[j].动力工程,2003,23(5):2665-2669.zhouhao,zhuhongbo,cenkefa.anon�lineboileroperatingoptimizationsystembasedontheneuralnetworkandthegeneticalgorithms[j].journalofchinesesocietyofpowerengineering,2003,23(5):2665-2669.
[11]  vapnikv.thenatureofstatisticallearningtheory[m].newyork:springerverlag,1999:3-21.
[12]  高正阳,郭振,胡佳琪,等.基于支持向量机与数值法的w火焰锅炉多目标燃烧优化及火焰重建[j].中国电机工程学报,2011,31(5):13�19.gaozhengyang,guozhen,hujiaqi,etal.multi-objectivecombustionoptimizationandflamereconstructionforwshapedboilerbasedonsupportvectorregressionandnumericalsimulation[j].proceedingsofthecsee,2011,31(5):13-19.
[13]  smolaaj,scholkopeb.atutorialonsupportvectorregression[j].statisticsandcomputing,2004,14:199-222.
[14]  赵振宁,童家麟,叶学民,等.燃尽风对300mw锅炉燃烧特性影响的数值模拟[j].华东电力,2013,41(1):214-219.zhaozhenning,tongjialin,yexuemin,etal.numericalsimulationoneffectsofoverfireaironcombustioncharacteristicsin300mwboiler[j].eastchinaelectricpower,2013,41(1):214-219.
[15]  王小平,曹立明.遗传算法�理论应用与软件实现[m].西安:西安交通大学出版社,2002.wangxiaoping,caoliming.geneticalgorithm-thetheoryapplicationandsoftwareimplementation[m].xi'an:xi'anjiaotonguniversitypress,2002(inchinese).
[16]  施光燕,董加礼.最优化方法[m].北京:高等教育出版社,1999.shiguangyan,dongjiali.optimizationmethod[m].beijing:highereducationpress,1999(inchinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133