全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
热力发电  2015 

粒子群算法与径向神经网络相结合的凝汽器真空预测模型

, PP. 72-76

Keywords: 凝汽器,真空,pso,rbf,软测量,预测模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

以聚类法的径向神经网络(rbf)为主,介绍了rbf的输入层、隐层和输出层之间的实现细节,给出各个部分的矩阵匹配要求,采用粒子群算法(pso)寻找rbf模型中的基宽和输出层权值,并给出了具体实现过程,建立了凝汽器真空软测量模型。以300mw机组凝汽器系统的实际运行数据为例对该模型进行训练,通过凝汽器真空预测值与实际值的对比,验证了该模型对凝汽器运行状态判断的准确性,为其故障诊断提供了参考依据。

References

[1]  王建国,孟娜,殷鑫.基于粒子群优化算法的凝汽器真空预测模型[j].动力工程学报,2012,32(10):815-819.wangjianguo,mengna,yinxin.predictionmodelofcondenservacuumdegreebasedonparticleswarmoptimizationalgorithm[j].journalofchinesesocietyofpowerengineering,2012,32(10):815-819.
[2]  王建国,殷鑫,孟娜.凝汽器漏入空气量在线监测[j].汽轮机技术,2012,54(2):139-140.wangjianguo,yinxin,mengna.theonlinemonitoringofairleakforcondenser[j].turbinetechnology,2012,54(2):139-140.
[3]  王建国,汪勇华.凝汽器真空应达值的在线计算[j].热力发电,2013,42(8):34-35.wangjianguo,wangyonghua.onlinecalculationfornormvacuumofcondensers[j].thermalpowergeneration,2013,42(8):34-35.
[4]  李勇,曹丽华,张欣刚.汽轮机凝汽器真空应达值的确定方法及应用[j].汽轮机技术,2002,44,(4):207-209.liyong,caolihua,zhangxingang.thedeterminingmethodofnormvacuumofcondenserforsteamturbineanditsapplication[j].turbinetechnology,2002,44(4):207-209.
[5]  陈学文,张晓霞,刘庆.提高300mw汽轮机组运行经济性途径的分析与探讨[j].热力透平,2003,32(4):252-253.chenxuewen,zhangxiaoxia,liuqing.analysisanddiscussiononmethodsofimprovingoperationefficiencyof300mwsteamturbineunit[j].thermalturbine,2003,32(4):252-253.
[6]  王娟.电价、煤价、凝汽器真空对发电厂经济效益的影响及其分析[j].青海电力,2008,27(1):1-3.wangjuan.effectandanalysisofelectricityprice,coalpriceandvacuumcondenseroneconomicalbenefitofpowergeneratingplant[j].qinghaielectricpower,2008,27(1):1-3.
[7]  吴银钧,张莉,程器,等.基于冷却水温求解的凝汽器全三维数值模拟[j].东方汽轮机,2014(1):7-8.wuyinjun,zhangli,chengqi,etal.3dnumericalsimulationofsteamcondensersbasedonsolvingtheequationoftemperatureofcoolingwater[j].dongfangturbine,2014(1):7-8.
[8]  nicolaosb.reformulatedradialbasisneuralnetworkstrainedbygradientdescent[j].ieeetransactionsonneuralnetworks,1999,10(3):657-671.
[9]  魏海坤.神经网络结构设计的理论与方法[m].北京:国防工业出版社,2005.weihaikun.designtheoryandmethodofneuralnetworkstructure[m].beijing:nationaldefenceindustrypress,2005(inchinese).
[10]  张海,浦健,张啸澄.基于粒子群优化算法的elman神经网络凝汽器真空模型[j].热力发电,2010,39(4):7-8.zhanghai,pujian,zhangxiaocheng.amodelforpredictingvacuuminthecondenserbasedonelmanneuralnetworkbyusingparticleswarmoptimizationalgorithm[j].thermalpowergeneration,2010,39(4):7-8.
[11]  刘景艳.基于改进粒子群神经网络的提升机故障诊断[j].河南理工大学学报(自然科学版),2014,33(3):313-314.liujingyan.hoistfaultdiagnosisbasedonimprovedparticleswarmneuralnetwork[j].journalofhenanpolytechnicuniversity(naturalscienceedition),2014,33(3):313-314.
[12]  郭通,兰巨龙,李玉峰,等.基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[j].电子与信息学报,2013,35(9):2220-2221.guotong,lanjulong,liyufeng,etal.networktrafficpredictionwithradialbasisfunctionneuralnetworkbasedonquantumadaptiveparticleswarmoptimization[j].journalofelectronics&informationtechnology,2013,35(9):2220-2221.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133