全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
热力发电  2013 

基于最小均方误差准则的ica过程监控方法

, PP. 121-126

Keywords: 锅炉,制粉系统,过程监控,最小均方误差,ica,mse?ica

Full-Text   Cite this paper   Add to My Lib

Abstract:

独立成分分析(ica)近年来在过程监控领域获得广泛关注。针对ica的数据降维问题,提出了一种基于最小均方误差准则的ica降维算法(mse?ica)并给出了数学证明。该算法按照最小均方误差估算独立成分的重要性进行排序,能够准确选择影响过程状态的关键隐变量,有效增加基于ica的过程监控算法的鲁棒性,集中监控对过程状态变化起决定作用的成分,从而有效提高了过程监控算法的性能。仿真试验和某电厂制粉系统故障数据测试均表明,该方法能够显著降低过程监控方法的漏检率,提高检测的可靠性。

References

[1]  gez,songz.processmonitoringbasedonindependentcomponentanalysis�principalcomponentanalysis(ica�pca)andsimilarityfactors[j].industrial&engineeringchemistryresearch,2007,46(7):2054�2063.
[2]  wangj,zhuw,sig,etal.featureextractioninballmillpulverizingsystembasedonmulti�sensordatafusion[c].internationalconferenceoncomputerscienceandsoftwareengineering,wuhan,china,2008,1:573�576.
[3]  司刚全,曹晖,王靖程,等.基于复合式神经网络的火电厂筒式钢球磨煤机负荷软测量[j].热力发电,2007(5):35�37.sigangquan,caohui,wangjingcheng,etal.loadsoftsenserfortubetypeballmillbasedoncompositeneuralnetworkinthermalpowerplant[j].thermalpowergeneration,2007(5):35�37.
[4]  孙丽华,曲莹军,张彦斌,等.钢球磨煤机负荷检测方法的研究及实现[j].热力发电,2004(11):8.sunlihua,quyingjun,zhangyanbin,etal.studyonloaddetectingmethodforballmillsinpowerplantandrealizationthereof[j].thermalpowergeneration,2004(11):8.
[5]  xiongl,liangj,qianj.multivariatestatisticalprocessmonitoringofanindustrialpolypropylenecatalyzerreactorwithcomponentanalysisandkerneldensityestimation[j].chinesejournalofchemicalengineering,2007,15(4):524�532.
[6]  hsucc,chenls,liuch.aprocessmonitoringschemebasedonindependentcomponentanalysisandadjustedoutliers[j].internationaljournalofproductionresearch,2010,48(6):1727�1743.
[7]  leej,kangb,kangsh.integratingindependentcomponentanalysisandlocaloutlierfactorforplant�wideprocessmonitoring[j].journalofprocesscontrol,2011,21(7):1011�1021.
[8]  lirf,wangxz.dimensionreductionofprocessdynamictrendsusingindependentcomponentanalysis[j].computers&chemicalengineering,2002,26(3):467�473.
[9]  kanom,hasebes,hashimotoi,etal.evolutionofmultivariatestatisticalprocesscontrol:applicationofindependentcomponentanalysisandexternalanalysis[j].computers&chemicalengineering,2004,28(6):1157�1166.
[10]  leejm,yoock,leeib.statisticalprocessmonitoringwithindependentcomponentanalysis[j].journalofprocesscontrol,2004,14(5):467�485.
[11]  liux,xiel,krugeru,etal.statistical�basedmonitoringofmultivariatenon�gaussiansystems[j].aichejournal,2008,54(9):2379�2391.
[12]  hsucc,chenmc,chenls.intelligentica�svmfaultdetectorfornon�gaussianmultivariateprocessmonitoring[j].expertsystemswithapplications,2010,37(4):3264�3273.
[13]  gez,gaof,songz.batchprocessmonitoringbasedonsupportvectordatadescriptionmethod[j].journalofprocesscontrol,2011,21(6):949�959.
[14]  weij,wangj,guos.mathematicmodelingandconditionmonitoringofpowerstationtube�ballmillsystems[c].americancontrolconference,st.louis,missouri,usa,2009:4699�4704.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133