全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
热力发电  2014 

基于自适应遗传算法的锅炉低nox燃烧建模及其优化

, PP. 60-64

Keywords: 电站锅炉,燃烧优化,nox排放,svm,自适应遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了对锅炉nox排放进行优化控制,分析现场运行数据,建立了基于支持向量机(svm)的nox排放特性模型,采用改进的自适应遗传算法对模型参数进行寻优,并比较了基于sigmoid核函数和rbf核函数的svm模型的性能。结果表明,rbf核函数更具有优势,且svm算法有良好的泛化能力和预测精度。结合svm建模和自适应遗传算法寻优,对锅炉可调参数进行优化,使该炉的nox排放量从423mg/m3降低至219.4mg/m3,下降幅度达到了48.13%。通过上述方法可得到低nox排放的最佳运行参数组合,为电站锅炉的运行优化指导和nox排放控制提供参考和依据。

References

[1]  kalogirousa.artificialintelligenceforthemodelingandcontrolofcombustionprocesses:areview[j].progressinenergyandcombustionscience,2003,29(6):515-566.
[2]  何勇超.采用燃烧系统模型预测锅炉效率和nox排放浓度[j].热力发电,2013,42(4):65-66.heyongchao.combustionsystemmodelbasedpredictionofboilerefficientandnoxemission[j].thermalpowergeneration,2013,42(4):65-66.
[3]  祝欣慰,孙保民,杜旭,等.基于人工神经网络的锅炉受热面污染在线监测[j].热力发电,2012,41(9):99-102.zhuxinwei,sunbaomin,duxu,etal.artificialneuralnetworkbasedon-linemonitoringoffoulingandslaggingonheatingsurfaceofcoal-firedboiler[j].thermalpowergeneration,2012,41(9):99-102.
[4]  江文豪,韦红旗,屈天章,等.基于遗传算法优化参数的svm燃煤发热量预测[j].热力发电,2011,40(3):14-19.jiangwenhao,weihongqi,qutianzhang,etal.predictionofthecalorificvalueforfuelcoalbasedonthesupportvectorregressionmachinewithparametersoptimizedbygeneticalgorithm[j].thermalpowergeneration,2011,40(3):14-19.
[5]  沈利,杨建国,赵虹.基于燃煤特性的电站锅炉排烟温度预测模型研究[j].热力发电,2011,40(7):19-23.shenli,yangjianguo,zhaohong.studyonpredictionmodelfortemperatureoffluegasexhaustedfromutilityboilersbasedonpropertiesoffuelcoal[j].thermalpowergeneration,2011,40(7):19-23.
[6]  刘定平,蔡泓铭,叶向荣.基于lssvm-mode的锅炉效率与nox排放优化研究[j].热力发电,2010,39(7):23-26,35.liudingping,caihongming,yexiangrong.studyonoptimizationofboilerefficiencyandnoissionbasedonlssvm-mode[j].thermalpowergeneration,2010,39(7):23-26,35.
[7]  胡剑琛.火力发电机组海水烟气脱硫效率优化研究[j].热力发电,2011,40(10):25-28.hujianchen.studyonoptimizationofdesulphurizationusingseawaterinthermalpowerplants[j].thermalpowergeneration,2011,40(10):25-28.
[8]  vapnikv.thenatureofstatisticallearningtheory[m].newyork:springerverlag,1999.
[9]  信晶,孙保民,肖海平,等.应用svm监测电站锅炉受热面积灰研究[j].中国电机工程学报,2013,33(5):21-27.xinjing,sunbaomin,xiaohaiping,etal.researchonapplyingsupportvectormachinetomonitorashdepositionofheatingsurfaceinautilityboiler[j].proceedingsofthecsee,2013,33(5):21-27.
[10]  atthajariyakuls,leephakpreedat.neuralcomputingthermalcomfortindexforhvacsystems[j].energyconversionandmanagement,2005,46(15/16):2553-2565.
[11]  胡文凯,方彦军,李鑫,等.基于遗传算法的超超临界机组过热器动态模型参数辨识[j].热力发电,2011,40(11):28-32.huwenkai,fangyanjun,lixin,etal.dynamicmodelparameteridentificationforsuperheaterofultra-supercriticialunitsbasedongeneticalgorithm[j].thermalpowergeneration,2011,40(11):28-32.
[12]  温文杰,马晓茜,刘翱.锅炉混煤掺烧的飞灰含碳量预测与运行优化[j].热力发电,2010,39(3):30-35.wenwenjie,maxiaoqian,liuao.predictionofunburnedcarboncontentinflyashandoperationoptimizationformixedlyburningblendedcoalinboilers[j].thermalpowergeneration,2010,39(3):30-35.
[13]  yant.animprovedgeneticalgorithmanditsblendingapplicationwithneuralnetwork[c]//20102ndinternationalworkshoponintelligentsystemsandapplications(isa).2010:1-4.
[14]  朱予东,王星久,王天龙,等.基于自适应遗传算法参数优化的锅炉燃烧特性建模[j].应用能源技术,2011(8):31-34.zhuyudong,wangxingjiu,wangtianlong,etal.boilercombustioncharacteristicsmodelingbasedonparameteroptimizationbyadaptivegeneticalgorithm[j].appliedenergytechnology,2011(8):31-34.
[15]  魏辉.燃煤电站锅炉低nox燃烧优化运行策略的研究[d].上海交通大学,2008.weihui.investigationofoperationstrategyonlownoxcombustionoptimizationofcoalfiredutilityboiler[d].shanghaijiaotonguniversity,2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133