全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
热力发电  2014 

基于gmdh神经网络的超超临界机组过热蒸汽温度预测模型及仿真研究

, PP. 102-107

Keywords: 超超临界,1000mw机组,过热蒸汽温度,gmdh神经网络,预测模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于超超临界1000mw机组过热蒸汽温度控制对象具有大滞后、非线性、动态参数随工况变化大等特点,使得传统的控制方法难以适应过热蒸汽温度的控制,出现过热蒸汽温度波动大,甚至超温等问题。对此,采用数据处理群集方法(gmdh)神经网络建立了过热蒸汽温度动态预测模型,以预测过热蒸汽温度的变化趋势。仿真结果表明,基于gmdh神经网络的过热蒸汽温度预测效果优于线性神经网络和bp神经网络,具有较好的移植性和实用性。

References

[1]  徐明华,周克毅.超临界直流锅炉过热汽温变工况特性分析[j].江苏电机工程,2009,28(5):11�13.xuminghua,zhoukeyi.analysisonsuperheatedsteamtemperaturecharacteristicsofsupercriticalonce�throughboiler[j].jiangsuelectricalengineering,2009,28(5):11�13.
[2]  韩波.超临界600mw机组直流锅炉屏式过热器超温问题分析及治理[j].热力发电,2009,38(7):60�63.hanbo.analysisofover�temperatureontheplatensuperheaterofonce�throughboilerforsupercritical600mwunit[j].thermalpowergeneration,2009,38(7):60�63.
[3]  钟灼均,常太华,朱红路.lms算法在过热汽温建模中的应用[j].陕西电力,2010(4):22�25.zhongzhuojun,changtaihua,zhuhonglu.applicationoflmsalgorithminmodelingsuperheatedsteamtemperature[j].shaanxielectricpower,2010(4):22�25.
[4]  于红霞.基于神经网络过热汽温模型辩识[j].锅炉制造,2008(4):66�68.yuhongxia.modelidentificationofsuperheatertemperaturebasedneuralnetwork[j].boilermanufacturing,2008(4):66�68.
[5]  黄宝海,韩璞,葛忠真,等.基于现场数据的电站过热器神经网络建模[j].华北电力学报,2008,35(2):66�69.huangbaohai,hanpu,gezhongzhen,etal.modelingasuper�heaterofpowerplantbasedonneuralnetworkusingfielddata[j].journalofnorthchinaelectricpoweruniversity,2008,35(2):66�69.
[6]  孙灵芳,邵萌萌,刘旭颖.基于改进的bp算法的过热汽温建模[j].自动化技术与应用,2010,29(4):1�3.sunlingfang,shaomengmeng,liuxuying.superheatedsteamtemperaturemodelingbasedonimprovingbpalgorithm[j].techniquesofautomation&application,2010,29(4):1�3.
[7]  mal,liny,leeky.superheatersteamtemperaturecontrolfora300mwboilerunitwithinversedynamicprocessmodels[c]//2010ieeeonpowerandenergysocietygeneralmeeting.2010:1�6.
[8]  huangsj,shihkr.applicationofafuzzymodelforshort�termloadforecastwithgroupmethodofdatahandlingenhancement[j].internationaljournalofelectricalpower&energysystems,2002,24(8):631�638.
[9]  najafzadehm,baraniga.comparisonofgroupmethodofdatahandlingbasedgeneticprogrammingandbackpropagationsystemstopredictscourdeptharoundbridgepiers[j].scientiairanica,2011,18(6):1207�1213.
[10]  godfreyco.designofhybriddifferentialevolutionandgroupmethodofdatahandlingnetworksformodelingandprediction[j].informationsciences,2008,178(18):3616�3634.
[11]  lif,upadhyayabr,coffeyla.model�basedmonitoringandfaultdiagnosisoffossilpowerplantprocessunitsusinggroupmethodofdatahandling[j].isatransactions,2009,48(2):213�219.
[12]  弓岱伟,孙德敏,郝卫东,等.基于多模型切换阶梯式广义预测控制的电站锅炉主汽温控制.中国科学技术大学学报,2007,37(12):1488�1493.gongdaiwei,sundemin,haoweidong.model�switchingstair�likegeneralizedpredictivecontrolofmainsteamtemperatureinpowerplantboilers[j].journalofuniversityofscienceandtechnoglogyofchina,2007,37(12):1488�1493.
[13]  ivakhnenkoag,ivakhnenkoga.thereviewofproblemssolvablebyalgorithmsofthegroupmethodofdatahandling(gmdh)[j].patternrecognitionandimageanalysis,1995,5(4):527�535.
[14]  袁立川,丁艳军,李东海.过热汽温多模型预测控制的现场应用[j].清华大学学报:自然科学版,2010,50(8):1258�1262.yuanlichuan,dingyanjun,lidonghai.fieldapplicationofmultiplemodelpredictivecontrolforsuperheattemperatureinboilers[j].journaloftsinghuauniversity:scienceandtechnology,2010,50(8):1258�1262.
[15]  ivakhnenkoag.heuristicself�organizationinproblemsofengineeringcybernetics[j].automatica,1970,6(2):207�219.
[16]  贺昌政.自组织数据挖掘与经济预测[m].北京:科学出版社,2005.hechanzheng.self�organizingdataminingandeconomicforcasts[m].beijing:sciencepress,2005(inchinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133