全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
热力发电  2015 

结合相空间重构和elm的磨煤机振动软测量

, PP. 42-47

Keywords: 磨煤机振动,elm,相空间重构,多参数,变煤种,软测量

Full-Text   Cite this paper   Add to My Lib

Abstract:

以某1000mw燃煤发电机组锅炉的磨煤机振动作为软测量对象,建立了结合相空间重构和极限学习机(elm)的磨煤机振动模型,并对比了有和无煤种信息输入的磨煤机振动预测效果。该模型综合考虑磨煤机运行的多参数和变煤种情况,运用相空间重构将振动烈度重构成m维时延为τ的矩阵,利用前m-1维与其他参数组合成elm的输入矩阵,第m维作为输出。测试结果表明,模型对磨煤机振动预测的平均相对误差为6.27%,优于传统的elm和支持向量机(svm)模型;煤种信息对磨煤机的振动有一定影响。

References

[1]  吴普刚.ihi-vs24型中速磨煤机振动分析及改进[j].热力发电,2007,36(12):88-89.pugangw.analysisofvibrationforihi-vs24mediumspeedcoalmillandretrofitthereof[j].thermalpowergeneration,2007,36(12):88-89.
[2]  刘定平,叶向荣,陈斌源,等.基于核主元分析和最小二乘支持向量机的中速磨煤机故障诊断[j].动力工程,2009,29(2):155-158.liudingping,yexiangrong,chenbinyuan,etal.faultdiagnosisofmediumspeedmillbasedonkpcaandlssvm[j].journalofpowerengineering,2009,29(2):155-158.
[3]  黎明,何玉林,金鑫.基于神经网络的风力机结构耦合振动预测模型[j].系统仿真学报,2009(2):413-417.liming,heyulin,jinxin.coupledvibrationforecastingofwindturbinebasedonartificialneuralnetwork[j].journalofsystemsimulation,2009(2):413-417.
[4]  梁磊,苏雷涛,冯永新,等.基于灰色理论的汽轮机振动预测[j].热力发电,2012,41(10):18-20.lianglei,suleitao,fengyongxin,etal.greytheorybasedvibrationpredictionforsteamturbines[j].thermalpowergeneration,2012,41(10):18-20.
[5]  packardnh,crutchfieldjp,farmerjd,etal.geometryfromatimeseries[j].physicalreviewletters,1980,45(9):712.
[6]  haykins,lippmannr.neuralnetworks,acomprehensivefoundation[j].internationaljournalofneuralsystems,1994,5(4):363-364.
[7]  陈刚,夏季,彭鹏,等.火电机组混煤掺烧全程动态优化系统开发与应用[j].中国电力,2011,44(4):50-54.chengang,xiajia,pengpeng,etal.dynamicoptimizationsystemofentireprocessforcoalblendinginthermalpowerplant[j].electricpower,2011,44(4):50-54.
[8]  赵虹,郑敏,周永刚.不同煤化程度煤的可磨性指数变化和破碎特性[j].能源工程,2006(6):29-31.zhaohong,zhengmin,zhouyonggang.experimentalinvestigationinthegrindingbehaviorandthecomminutingcharacterofcoalsofdifferentrank[j].energyengineering,2006(6):29-31.
[9]  高奎,常磊,陈志刚,等.mps型中速磨煤机运行故障分析及其控制功能改进[j].热力发电,2011,40(8):73-77.gaokui,changlei,chenzhigang.analysisoffaultsinoperationofmpstypemediumspeedcoalpulverisersandretrofitofitscontrolfunctions[j].thermalpowergeneration,2011,40(8):73-77.
[10]  王超.燃煤电厂制粉系统hp983碗式中速磨煤机状态检修的研究[d].武汉:华中科技大学,2007.wangchao.astudyofcondition-basedmaintenanceforhp983mediumspeedmillsofmillingsystemincoal-burningpowerstation[d].wuhan:huazhonguniversityofscienceandtechnology,2007.
[11]  刘文光,陈国平,贺红林,等.结构振动疲劳研究综述[j].工程设计学报,2012,19(1):1-8.liuwenguagn,chenguoping,hehonglin,etal.reviewofstudyingonvibrationfatigue[j].chinesejournalofengineeringdesign,2012,19(1):1-8.
[12]  李传涛,郝伟,郝旺身,等.基于频段振动烈度和arima的煤矿减速机状态预测[j].煤矿机械,2011,32(4):251-253.lichuantao,haowei,haowangshen,etal.studyoncoalgearboxstatuspredictivemethodbasedonbandvibrationseverityandarima[j].coalminemachinery,2011,32(4):251-253.
[13]  冯广斌,吴震宇,袁惠群.基于混沌理论与svm的内燃机振动信号趋势预测[j].振动.测试与诊断,2011,31(1):64-69.fengguangbin,wuzhenyu,yuanhuiqun.enginevibrationsignaltrendforecastingbasedonchaostheoryandsvm[j].journalofvibration,measurement&diagnosis,2011,31(1):64-69.
[14]  王晓景,黎敏,阳建宏,等.结合相空间和ls-svm的风机状态预测方法[j].中国科技论文,2013,8(8):743-746.wangxiaojing,limin,yangjianhong,etal.trendpredictionforconditionoffansbasedonphasespaceandleastsquaressupportvectormachine[j].chinesetechnologythesis,2013,8(8):743-746.
[15]  inoussag.基于改进的神经网络自回归模型的非线性时间序列建模和预测[d].长沙:中南大学,2012.inoussag.nonlineartimeseriesmodelingandpredictionusingmodifiedneuralnetworks-basedautoregressivemodels[d].changsha:centralsouthuniversity,2012(inchinese).
[16]  takensf.detectingstrangeattractorsinturbulence[m]//dynamicalsystemsandturbulence,warwick1980.springerberlinheidelberg,1981:366-381.
[17]  huanggb,zhuqy,siewck.extremelearningmachine:theoryandapplications[j].neurocomputing,2006,70(1):489-501.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133