|
天津大学学报(自然科学与工程技术版) 2007
基于小波变换特征提取的支持向量机心搏分类研究, PP. 811-815 Keywords: 心搏分类,小波变换,特征提取,支持向量机 Abstract: 在对心电信号进行离散小波变换并提取优化特征组合的基础上,利用标准算法(l-a-r算法)和二叉树算法分别构建支持向量机分类器实现心电图的分类,对不同小波下提取不同维特征向量构建的分类器性能进行比较,同时对取自mit-bih数据库的4类心电图(正常心搏、左束支传导阻滞心搏、右束支传导阻滞心搏和起搏心搏)进行分类.结果表明,采用标准算法对db2小波下8维特征向量训练的支持向量机分类器分类性能最优,总体分类正确率达98.770/0.
|