全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diversity of Mycobacterium tuberculosis Isolates from New Pulmonary Tuberculosis Cases in Addis Ababa, Ethiopia

DOI: 10.1155/2012/892079

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the genetic diversity of Mycobacterium tuberculosis is needed for a better understanding of the epidemiology of TB and could have implications for the development of new diagnostics, drugs, and vaccines. M. tuberculosis isolates were characterized using spoligotyping and were compared with the SpoIDB4 database of the Pasteur Institute of Guadeloupe. A total of 53 different patterns were identified among 192 isolates examined. 169 of the isolates were classified into one of the 33 shared SITs, whereas the remaining 23 corresponded to 20 orphan patterns. 54% of the isolates were ascribed to the T family, a family which has not been well defined to date. Other prominent families were CAS, Haarlem, LAM, Beijing, and Unknown comprising 26%, 13%, 2.6%, 0.5%, and 2.1%, respectively. Among HIV-positive patients, 10 patterns were observed among 25 isolates. The T (38.5%), H (26.9%), and CAS (23.1%) families were the most common among HIV-positive individuals. The diversity of the M. tuberculosis strains found in this study is very high, and there was no difference in the distribution of families in HIV-positive and HIV-negative TB patients except the H family. Tuberculosis transmission in Addis Ababa is due to only the modern M. tuberculosis families (CAS, LAM, T, Beijing, Haarlem, and U). 1. Introduction Tuberculosis (TB) continues to be a major public health problem in Ethiopia. Currently Ethiopia is rated seventh among the 22 high-TB-burdened nations of the world, with a prevalence of 394 per 100,000 population in the year 2010 [1]. This situation has been worsened by the country’s HIV/AIDS epidemic and emerging Multidrug-Resistant (MDR) TB. HIV prevalence was 3.5% in 2009 and among TB patients 15% were coinfected with HIV and the rate of MDR is 1.6 in new cases and 12% in retreatment cases [2]. Despite the high-TB burden in the country, very limited information is available on the genetic diversity of M. tuberculosis strains and the impact of HIV disease on this diversity. Molecular typing techniques have been extensively used to speciate strains of M. tuberculosis involved in TB infections, studying molecular epidemiology of M. tuberculosis, providing insights into dissemination dynamics, evolutionary genetics, and detection of suspected outbreaks and person-to-person transmission [3]. Although recent studies are recommending the use of robust markers such as single nucleotide polymorphisms (SNP) or large sequence polymorphisms (LSP) for a better understanding of strain lineages [4], Insertion sequence (IS) 6110 restriction fragment length

References

[1]  World Health Organization, “Global Tuberculosis Control WHO Report 2011,” 2011.
[2]  FMoH, “National HIV/AIDS Prevention Control Office Technical Document for the AIDS in Ethiopia 6th Report,” 6th report, 2009.
[3]  R. Brosch, S. V. Gordon, M. Marmiesse, et al., “A new evolutionary scenario for the Mycobacterium tuberculosis complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 3684–3689, 2002.
[4]  I. Comas and S. Gagneux, “A role for systems epidemiology in tuberculosis research,” Trends in Microbiology, vol. 19, pp. 492–500, 2011.
[5]  K. Kremer, D. Van Soolingen, R. Frothingham et al., “Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility,” Journal of Clinical Microbiology, vol. 37, no. 8, pp. 2607–2618, 1999.
[6]  J. D. A. Van Embden, M. D. Cave, J. T. Crawford et al., “Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology,” Journal of Clinical Microbiology, vol. 31, no. 2, pp. 406–409, 1993.
[7]  J. Kamerbeek, L. Schouls, A. Kolk et al., “Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology,” Journal of Clinical Microbiology, vol. 35, no. 4, pp. 907–914, 1997.
[8]  D. Affolabi, G. Anyo, F. Fa?hun et al., “First molecular epidemiological study of tuberculosis in Benin,” International Journal of Tuberculosis and Lung Disease, vol. 13, no. 3, pp. 317–322, 2009.
[9]  M. V. Afanas'ev, L. N. Ikryannikova, E. N. Il'ina, et al., “Molecular typing of Mycobacterium tuberculosis circulated in Moscow, Russian Federation,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 30, pp. 181–191, 2011.
[10]  H. Dong, Z. Liu, B. Lv et al., “Spoligotypes of Mycobacterium tuberculosis from different provinces of China,” Journal of Clinical Microbiology, vol. 48, no. 11, pp. 4102–4106, 2010.
[11]  R. Groenheit, S. Ghebremichael, J. Svensson, et al., “The Guinea-Bissau family of Mycobacterium tuberculosis complex revisited,” PLos ONE, vol. 6, Article ID e18601, 2011.
[12]  S. Viegas, “RMeseoarlceh acrtuicllear diversity of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in Mozambique,” BMC Microbiology, vol. 10, pp. 195–202, 2010.
[13]  R. Groenheit, S. Ghebremichael, J. Svensson et al., “The GNB family of Mycobacterium tuberculosis complex revisited,” PLoS ONE, vol. 6, no. 4, Article ID e18601, 2011.
[14]  S. Rosales, L. Pineda-García, S. Ghebremichael, N. Rastogi, and S. E. Hoffner, “Molecular diversity of Mycobacterium tuberculosis isolates from patients with tuberculosis in Honduras,” BMC Microbiology, vol. 10, article 208, 2010.
[15]  M. Agonafir, E. Lemma, D. Wolde-Meskel et al., “Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia,” International Journal of Tuberculosis and Lung Disease, vol. 14, no. 10, pp. 1259–1265, 2010.
[16]  R. Brosch, S. V. Gordon, M. Marmiesse et al., “A new evolutionary scenario for the Mycobacterium tuberculosis complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3684–3689, 2002.
[17]  K. Brudey, J. R. Driscoll, L. Rigouts et al., “Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology,” BMC Microbiology, vol. 6, article 23, 2006.
[18]  G. S. Kibiki, B. Mulder, W. M. V. Dolmans et al., “M. tuberculosis genotypic diversity and drug susceptibility pattern in HIV- infected and non-HIV-infected patients in northern Tanzania,” BMC Microbiology, vol. 7, article 51, 2007.
[19]  W. A. Githui, A. M. Jordaan, E. S. Juma et al., “Identification of MDR-TB Beijing/W and other Mycobacterium tuberculosis genotypes in Nairobi, Kenya,” International Journal of Tuberculosis and Lung Disease, vol. 8, no. 3, pp. 352–360, 2004.
[20]  V. Ritacco, M. Di Lonardo, A. Reniero et al., “Nosocomial spread of human immunodeficiency virus-related multidrug- resistant tuberculosis in Buenos Aires,” Journal of Infectious Diseases, vol. 176, no. 3, pp. 637–642, 1997.
[21]  M. Kubin, M. Havelková, I. Hyn?icová, et al., “A multi drug-resistant tuberculosis micro epidemic caused by genetically closely related Mycobacterium tuberculosis strains,” Journal of Clinical Microbiology, vol. 37, pp. 2715–2716, 1999.
[22]  T. Zozio, C. Allix, S. Gunal et al., “Genotyping of Mycobacterium tuberculosis clinical isolates in two cities of Turkey: description of a new family of genotypes that is phylogeographically specific for Asia Minor,” BMC Microbiology, vol. 5, article 44, 2005.
[23]  M. P. Nicol and R. J. Wilkinson, “The clinical consequences of strain diversity in Mycobacterium tuberculosis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, pp. 955–965, 2008.
[24]  D. Portevin, S. Gagneux, I. Comas, and D. Young, “Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages,” PLoS Pathogens, vol. 7, no. 3, Article ID e1001307, 2011.
[25]  B. C. De Jong, P. C. Hill, A. Aiken et al., “Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in the Gambia,” Journal of Infectious Diseases, vol. 198, no. 7, pp. 1037–1043, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133