全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Body Mass Index Is Associated with Dietary Patterns and Health Conditions in Georgia Centenarians

DOI: 10.4061/2011/138015

Full-Text   Cite this paper   Add to My Lib

Abstract:

Associations between body mass index (BMI) and dietary patterns and health conditions were explored in a population-based multiethnic sample of centenarians from northern Georgia. BMI ≤20 and ≥25 was prevalent in 30.9% and 25.3% of study participants, respectively. In a series of logistic regression analyses controlled for gender and place of residence, the probability of having BMI ≥25 was increased by being black versus white and having a low citrus fruit, noncitrus fruit, orange/yellow vegetable or total fruit and vegetable intake. The probability of having BMI ≤20 was not associated with dietary intake. When controlled for race, gender, residence, and total fruit and vegetable intake, BMI ≥25 was an independent risk factor for diabetes or having a systolic blood pressure ≥140?mmHg or diastolic blood pressure ≥90?mmHg, whereas BMI ≤20 was a risk factor for anemia. Given the many potential adverse consequences of under- and overweight, efforts are needed to maintain a healthy weight, even in the oldest old. 1. Introduction Body mass index is a simple index of weight for height that is frequently used in the assessment of nutritional status. A low BMI, or underweight status, is often associated with an increased risk of mortality in seriously ill or hospitalized older adults [1, 2]. Conversely, a high BMI, indicative of overweight or obesity, is associated with an exacerbation in age-related physical and cognitive decline [3, 4] and with an increased prevalence or risk of many chronic health conditions common in older adults such as diabetes, hypertension, and cardiovascular disease [3–5]. Such associations are typically determined across the entire spectrum of older adults (aged 60+), with no further demarcation within this age classification. Our finding of a much higher prevalence of several nutritional deficiencies in centenarians as compared with octogenarians [6, 7], suggests that there is considerable heterogeneity in nutrient status in the “older adult” age group. Likewise, there may also be considerable heterogeneity within the older adult age group with regard to chronic health conditions. Thus, it is not known whether the associations between underweight or overweight/obesity and chronic health conditions as observed in previous studies of older adults extend to the very old. Dietary intake patterns featuring a high intake of nutrient-dense foods such as cereals, fruits, vegetables, and low-fat meat and dairy products have been associated with a number of favorable health outcomes in adults including a decreased prevalence of obesity [8, 9],

References

[1]  K. C. Neidert and B. Borner, Nutrition Care of the Older Adult: A Handbook for Dietetics Professionals Working throughout the Continum of Care, American Dietetic Association, 2nd edition.
[2]  K. Kitamura, K. Nakamura, T. Nishiwaki, K. Ueno, and M. Hasegawa, “Low body mass index and low serum albumin are predictive factors for short-term mortality in elderly Japanese requiring home care,” Tohoku Journal of Experimental Medicine, vol. 221, no. 1, pp. 29–34, 2010.
[3]  D. T. Villareal, C. M. Apovian, R. F. Kushner, and S. Klein, “Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 923–934, 2005.
[4]  D. K. Houston, B. J. Nicklas, and C. A. Zizza, “Weighty concerns: the growing prevalence of obesity among older adults,” Journal of the American Dietetic Association, vol. 109, no. 11, pp. 1886–1895, 2009.
[5]  M. Tjepkema, “Adult obesity,” Health Reports/Statistics Canada, vol. 17, no. 3, pp. 9–25, 2006.
[6]  M. A. Johnson, A. Davey, S. Park, D. B. Hausman, and L. W. Poon, “Age, race and season predict vitamin D status in African American and White centenarians and octogenarians,” Journal of Nutrition, Health and Aging, vol. 12, pp. 690–695, 2008.
[7]  M. A. Johnson, D. B. Hausman, A. Davey, L. W. Poon, R. H. Allen, and S. P. Stabler, “Vitamin B12 deficiency in African American and white octogenarians and centenarians in Georgia,” Journal of Nutrition, Health and Aging, vol. 14, no. 5, pp. 339–345, 2010.
[8]  A. M. Paradis, G. Godin, L. Pérusse, and M. C. Vohl, “Associations between dietary patterns and obesity phenotypes,” International Journal of Obesity, vol. 33, no. 12, pp. 1419–1426, 2009.
[9]  J. H. Ledikwe, H. Smiciklas-Wright, D. C. Mitchell, C. K. Miller, and G. L. Jensen, “Dietary patterns of rural older adults are associated with weight and nutritional status,” Journal of the American Geriatrics Society, vol. 52, no. 4, pp. 589–595, 2004.
[10]  P. K. Newby, D. Muller, J. Hallfrisch, R. Andres, and K. L. Tucker, “Food patterns measured by factor analysis and anthropometric changes in adults,” The American Journal of Clinical Nutrition, vol. 80, no. 2, pp. 504–513, 2004.
[11]  A. L. Anderson, T. B. Harris, F. A. Tylavsky, et al., “Dietary patterns and survival in older adults,” Journal of the American Dietetic Association, vol. 111, pp. 84–91, 2011.
[12]  D. B. Hausman, J. G. Fischer, and M. A. Johnson, “Nutrition in centenarians,” Maturitas, vol. 68, pp. 203–209, 2011.
[13]  A. Davey, M. F. Elias, I. C. Siegler, et al., “Cognitive function, physical performance, health, and disease: norms from the Georgia centenarian study,” Experimental Aging Research, vol. 36, pp. 394–425, 2010.
[14]  L. W. Poon, S. M. Jazwinski, R. C. Green, et al., “Methodological considerations in studying centenarians: lessons learned from the Georgia centenarian studies,” Annual Review of Gerontology and Geriatrics, vol. 27, pp. 213–264, 2007.
[15]  Y. Guigoz, B. Vellas, and P. J. Garry, “Assessing the nutritional status of the elderly: the Mini Nutritional Assessment as part of the geriatric evaluation,” Nutrition Reviews, vol. 54, no. 1, pp. S59–S65, 1996.
[16]  M. A. Johnson, A. Davey, D. B. Hausman et al., “Dietary differences between centenarians residing in communities and in skilled nursing facilities: the Georgia Centenarian Study,” Age, vol. 28, no. 4, pp. 333–341, 2006.
[17]  US Department of Health and Human Services and US Department of Agriculture, “Dietary Guidelines for Americans 2005,” 2005, http://www.health.gov/dietaryguidelines/dga2005/document/pdf/DGA2005.pdf.
[18]  W. C. Chumlea, S. S. Guo, K. Wholihan, D. Cockram, R. J. Kuczmarski, and C. L. Johnson, “Stature prediction equations for elderly non-Hispanic white, non-Hispanic black, and Mexico-American persons developed from NHANES III data,” Journal of the American Dietetic Association, vol. 98, no. 2, pp. 137–142, 1998.
[19]  National Institutes of Health: National Heart Lung and Blood Institute, North American Association for the Study of Obesity, “Practical Guide to the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults,” 2000, http://www.nhlbi.nih.gov/guidelines/obesity/prctgd_c.pdf.
[20]  B. Blanc, C. A. Finch, L. Hallberg, et al., “Nutritional anaemias. Report of a WHO Scientific Group,” WHO Technical Report Series, no. 40, pp. 1–40, 1968.
[21]  M. A. McDowell, C. D. Fryar, C. L. Ogden, and K. M. Flegal, “Anthropometric reference data for children and adults: United States, 2003–2006,” National Health Statistics Reports, Number 10, October 2008, http://www.cdc.gov/nchs/data/nhsr/nhsr010.pdf.
[22]  C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006.
[23]  M. A. Johnson, M. A. Brown, L. W. Poon, P. Martin, and G. M. Clayton, “Nutritional patterns of centenarians,” International Journal of Aging and Human Development, vol. 34, no. 1, pp. 57–76, 1992.
[24]  D. K. Houston, M. A. Johnson, L. W. Poon, and G. M. Clayton, “Individual foods and food group patterns of the oldest old,” Journal of Nutrition for the Elderly, vol. 13, no. 4, pp. 5–23, 1994.
[25]  V. H. Castellanos, “Food and nutrition in nursing homes,” Generations, vol. 28, no. 3, pp. 65–71, 2004.
[26]  N. S. Wellman and B. Kamp, “Federal food and nutrition assistance programs for older people,” Generations, vol. 28, no. 3, pp. 78–85, 2004.
[27]  J. Aranceta, C. Pérez-Rodrigo, L. Serra-Majem et al., “Prevention of overweight and obesity: a Spanish approach,” Public Health Nutrition, vol. 10, no. 10A, pp. 1187–1193, 2007.
[28]  L. Wang, J. M. Gaziano, E. P. Norkus, J. E. Buring, and H. D. Sesso, “Associations of plasma carotenoids with risk factors and biomarkers related to cardiovascular disease in middle-aged and older women,” American Journal of Clinical Nutrition, vol. 88, no. 3, pp. 747–754, 2008.
[29]  K. E. E. Schroder, “Effects of fruit consumption on body mass index and weight loss in a sample of overweight and obese dieters enrolled in a weight-loss intervention trial,” Nutrition, vol. 26, no. 7-8, pp. 727–734, 2010.
[30]  T. Andreyeva, M. W. Long, K. E. Henderson, and G. M. Grode, “Trying to lose weight: diet strategies among Americans with overweight or obesity in 1996 and 2003,” Journal of the American Dietetic Association, vol. 110, no. 4, pp. 535–542, 2010.
[31]  J. Kruger, H. M. Blanck, and C. Gillespie, “Dietary practices, dining out behavior, and physical activity correlates of weight loss maintenance,” Preventing Chronic Disease, vol. 5, no. 1, p. A11, 2008.
[32]  M. C. de Oliveira, R. Sichieri, and R. Venturim Mozzer, “A low-energy-dense diet adding fruit reduces weight and energy intake in women,” Appetite, vol. 51, no. 2, pp. 291–295, 2008.
[33]  S. Liu, J. E. Manson, I. M. Lee et al., “Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study,” American Journal of Clinical Nutrition, vol. 72, no. 4, pp. 922–928, 2000.
[34]  K. J. Joshipura, F. B. Hu, J. E. Manson et al., “The effect of fruit and vegetable intake on risk for coronary heart disease,” Annals of Internal Medicine, vol. 134, no. 12, pp. 1106–1114, 2001.
[35]  L. A. Bazzano, J. He, L. G. Ogden et al., “Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study,” American Journal of Clinical Nutrition, vol. 76, no. 1, pp. 93–99, 2002.
[36]  E. Riboli and T. Norat, “Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk,” American Journal of Clinical Nutrition, vol. 73, supplement 3, pp. 559S–569S, 2003.
[37]  L. P. Svetkey, T. P. Erlinger, W. M. Vollmer et al., “Effect of lifestyle modifications on blood pressure by race, sex, hypertension status, and age,” Journal of Human Hypertension, vol. 19, no. 1, pp. 21–31, 2005.
[38]  F. J. van Duijnhoven, H. B. Bueno-de-Mesquita, P. Ferrari, et al., “Fruit, vegetables, and colorectal cancer risk: the European Prospective Investigation into Cancer and Nutrition,” American Journal of Clinical Nutrition, vol. 89, pp. 1441–1452, 2009.
[39]  K. Esposito, C. M. Kastorini, D. B. Panagiotakos, and D. Giugliano, “Prevention of type 2 diabetes by dietary patterns: a systemic review of prospective studies and meta-analysis,” Metabolic Syndrome and Related Disorders, vol. 8, pp. 471–476, 2010.
[40]  P. Carter, L. J. Gray, J. Troughton, K. Khunti, and M. J. Davies, “Fruit and vegetable intake and incidence of type 2 diabetes: systemic review and meta-analysis,” British Medical Journal, vol. 341, p. c4229, 2010.
[41]  G. Tsakos, K. Herrick, A. Sheiham, and R. G. Watt, “Edentulism and fruit and vegetable intake in low-income adults,” Journal of Dental Research, vol. 89, no. 5, pp. 462–467, 2010.
[42]  S. J. Hendrix, J. G. Fischer, S. Reddy et al., “Fruit and vegetable intake and knowledge increased following a community-based intervention in older adults in Georgia senior centers,” Journal of Nutrition for the Elderly, vol. 27, no. 1-2, pp. 155–178, 2008.
[43]  N. R. Sahyoun, X. L. Zhang, and M. K. Serdula, “Barriers to the consumption of fruits and vegetables among older adults,” Journal of Nutrition for the Elderly, vol. 24, no. 4, pp. 5–21, 2006.
[44]  C. W. Choi, J. Lee, K. H. Park et al., “Prevalence and characteristics of anemia in the elderly: cross-sectional study of three urban Korean population samples,” American Journal of Hematology, vol. 77, no. 1, pp. 26–30, 2004.
[45]  H. Ohwada, T. Nakayama, N. Nara, Y. Tomono, and K. Yamanaka, “An epidemiological study on anemia among institutionalized people with intellectual and/or motor disability with special reference to its frequency, severity and predictors,” BMC Public Health, vol. 6, article 85, 2006.
[46]  B. DiIorio, M. Cirillo, V. Bellizzi, D. Stellato, and N. G. DeSanto, “Prevalence and correlates of anemia and uncontrolled anemia in chronic hemodialysis patients-the Campania Dialysis Registry,” International Journal of Artificial Organs, vol. 30, pp. 325–333, 2007.
[47]  A. Ramel, P. V. Jonsson, S. Bjornsson, and I. Thorsdottir, “Anemia, nutritional status, and inflammation in hospitalized elderly,” Nutrition, vol. 24, no. 11-12, pp. 1116–1122, 2008.
[48]  L. Watson, W. Leslie, and C. Hankey, “Under-nutrition in old age: diagnosis and management,” Reviews in Clinical Gerontology, vol. 16, no. 1, pp. 23–34, 2006.
[49]  A. Haslam, Anemia in Georgia centenarians and octogenarians, M.S. thesis, University of Georgia, Athens, Ga, USA, 2010.
[50]  R. D. Semba, M. O. Ricks, L. Ferrucci et al., “Types of anemia and mortality among older disabled women living in the community: the Women's Health and Aging Study I,” Aging Clinical and Experimental Research, vol. 19, no. 4, pp. 259–264, 2007.
[51]  D. Aronson, M. Nassar, T. Goldberg, M. Kapeliovich, H. Hammerman, and Z. S. Azzam, “The impact of body mass index on clinical outcomes after acute myocardial infarction,” International Journal of Cardiology, vol. 145, pp. 476–480, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133