全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physical Activity Among Persons Aging with Mobility Disabilities: Shaping a Research Agenda

DOI: 10.4061/2011/708510

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the aging of the baby boomer population and their accompanying burden of disease, future disability rates are expected to increase. This paper summarizes the state of the evidence regarding physical activity and aging for individuals with mobility disability and proposes a healthy aging research agenda for this population. Using a previously published framework, we present evidence in order to compile research recommendations in four areas focusing on older adults with mobility disability: (1) prevalence of physical activity, (2) health benefits of physical activity, (3) correlates of physical activity participation, and, (4) promising physical activity intervention strategies. Overall, findings show a dearth of research examining physical activity health benefits, correlates (demographic, psychological, social, and built environment), and interventions among persons aging with mobility disability. Further research is warranted. 1. Introduction Disability rates are expected to increase with the aging of the baby boomer population [1]. Indeed, recent National Health and Nutrition Examination Survey (NHANES) data suggest that for those 60–69 years old, the prevalence of disability in activities of daily living, instrumental activities of daily living, and mobility is increasing [1, 2]. The future burden could overwhelm healthcare systems, rehabilitation medicine clinics, and public health agencies. With the increase in an aging demographic, researchers are focusing on ways to prevent secondary conditions in aging persons. Physical activity is recognized as a behavior with strong positive effects on mental, physical, and cognitive health [3]. The benefit of increased physical activity across all age groups is substantial. Thus, efforts to promote physical activity among older adults with existing mobility disability could help prevent a large burden of secondary illness. Although much physical activity research has focused on older adults who are free of disability and illness, the need still exists for a healthy aging research agenda specific to older adults with mobility disability for tertiary prevention purposes. Promoting healthy aging among people who already have mobility disabilities has been neglected. People with mobility disabilities may benefit from living in accordance with a healthy aging model that includes “the development and maintenance of optimal physical, mental, and social well-being and function” [4]. While the underlying mobility disability may not be reversible, general mental, physical, and cognitive health can be improved.

References

[1]  T. E. Seeman, S. S. Merkin, E. M. Crimmins, and A. S. Karlamangla, “Disability trends among older Americans: national health and nutrition examination surveys, 1988–1994 and 1999–2004,” American Journal of Public Health, vol. 100, no. 1, pp. 100–107, 2010.
[2]  M. Brault, J. Hootman, C. Helmick, and K. Theis, “Prevalence and most common causes of disability among adults—United States, 2005,” Morbidity and Mortality Weekly Report (MMWR), vol. 58, no. 16, pp. 421–426, 2009.
[3]  Physical Activity Guidelines Advisory Committee, Physical Activity Guidelines Advisory Committee Report, 2008, U.S. Department of Health and Human Services, Washington, DC, USA, 2008.
[4]  The Healthy Aging Research Network Writing Group, “The prevention research centers healthy aging research network,” Preventing Chronic Disease, vol. 3, no. 1, pp. 1–7, 2006.
[5]  T. Prohaska, E. Belansky, B. Belza, et al., “Physical activity, public health, and aging: critical issues and research priorities,” Journals of Gerontology B, vol. 61, no. 5, pp. S267–S273, 2006.
[6]  J. H. Rimmer, M.-D. Chen, J. A. McCubbin, C. Drum, and J. Peterson, “Exercise intervention research on persons with disabilities: what we know and where we need to go,” American Journal of Physical Medicine & Rehabilitation / Association of Academic Physiatrists, vol. 89, no. 3, pp. 249–263, 2010.
[7]  World Health Organization, International Classification of Functioning, Disability, and Health, 2001.
[8]  A. Patla and A. Shumway-Cook, “Dimensions of mobility: defining the complexity and difficulty associated with community mobility,” Journal of Aging and Physical Activity, vol. 7, no. 1, pp. 7–19, 1999.
[9]  A. M. Jette, “Toward a common language of disablement,” The Journals of Gerontology A, vol. 64, no. 11, pp. 1165–1168, 2009.
[10]  M. Field and A. Jette, The Future of Disability in America, Institute of Medicine, Washington, DC, USA, 2007.
[11]  H. Arksey and L. O'Malley, “Scoping studies: towards a methodological framework,” International Journal of Social Research Methodology, vol. 8, no. 1, pp. 19–32, 2005.
[12]  D. J. Lollar, “Public health and disability: emerging opportunities,” Public Health Reports, vol. 117, no. 2, pp. 131–136, 2002.
[13]  D. Mont, “Measuring health and disability,” The Lancet, vol. 369, no. 9573, pp. 1658–1663, 2007.
[14]  E. M. Crimmins and H. Beltran-Sanchez, “Mortality and morbidity trends: is there compression of morbidity?” The Journals of Gerontology B, vol. 66, no. 1, pp. 75–86, 2011.
[15]  A. Shumway-Cook, M. A. Ciol, K. M. Yorkston, J. M. Hoffman, and L. Chan, “Mobility limitations in the Medicare population: prevalence and sociodemographic and clinical correlates,” Journal of the American Geriatrics Society, vol. 53, no. 7, pp. 1217–1221, 2005.
[16]  Healthy People 2020, U.S. Department of Health and Human Services, Washington, DC, USA, 2010.
[17]  H. S. Picavet and G. A. van den Bos, “The contribution of six chronic conditions to the total burden of mobility disability in the Dutch population,” American Journal of Public Health, vol. 87, no. 10, pp. 1680–1682, 1997.
[18]  H. K. Vincent, K. R. Vincent, and K. M. Lamb, “Obesity and mobility disability in the older adult,” Obesity Reviews, vol. 11, no. 8, pp. 568–579, 2010.
[19]  D. E. Alley and V. W. Chang, “The changing relationship of obesity and disability, 1988–2004,” Journal of the American Medical Association, vol. 298, no. 17, pp. 2020–2027, 2007.
[20]  Physical Activity Guidelines for Americans, U.S. Department of Health and Human Services, 2008.
[21]  J. H. Rimmer, L. A. Wolf, B. Armour, and L. Sinclair, “Physical activity among adults with a disability—United States, 2005,” Morbidity and Mortality Weekly Report, vol. 56, no. 39, pp. 1021–1024, 2007.
[22]  DATA2010: The Healthy People 2010 Database, National Center for Health Statistics, Hyattsville, Md, USA, 2010.
[23]  M. Petter, C. Blanchard, K. A. Kemp, A. S. Mazoff, and S. N. Ferrier, “Correlates of exercise among coronary heart disease patients: review, implications and future directions,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 16, no. 5, pp. 515–526, 2009.
[24]  C. Tudor-Locke, T. L. Washington, and T. L. Hart, “Expected values for steps/day in special populations,” Preventive Medicine, vol. 49, no. 1, pp. 3–11, 2009.
[25]  K. A. Ginis, A. E. Latimer, K. P. Arbour-Nicitopoulos, et al., “Leisure time physical activity in a population-based sample of people with spinal cord injury part I: demographic and injury-related correlates,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 5, pp. 722–728, 2010.
[26]  J. M. Hootman, C. A. Macera, S. A. Ham, C. G. Helmick, and J. E. Sniezek, “Physical activity levels among the general US adult population and in adults with and without arthritis,” Arthritis Care and Research, vol. 49, no. 1, pp. 129–135, 2003.
[27]  J. Bolen, L. Murphy, K. Greenlund, et al., “Arthritis as a potential barrier to physical activity among adults with heart disease—United States, 2005 and 2007,” Morbidity and Mortality Weekly Report, vol. 58, no. 7, pp. 165–169, 2009.
[28]  R. W. Motl, E. M. Snook, E. McAuley, J. A. Scott, and M. L. Douglass, “Correlates of physical activity among individuals with multiple sclerosis,” Annals of Behavioral Medicine, vol. 32, no. 2, pp. 154–161, 2006.
[29]  R. J. van den Berg-Emons, J. B. Bussmann, J. A. Haisma, et al., “A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 11, pp. 2094–2101, 2008.
[30]  C. Warms, “Physical activity measurement in persons with chronic and disabling conditions: methods, strategies, and issues,” Family and Community Health, vol. 29, supplement 1, pp. 78S–88S, 2006.
[31]  J. H. Rimmer, B. B. Riley, and S. S. Rubin, “A new measure for assessing the physical activity behaviors of persons with disabilities and chronic health conditions: the physical activity and disability survey,” American Journal of Health Promotion, vol. 16, no. 1, pp. 34–45, 2001.
[32]  A. E. Latimer, K. A. M. Ginis, B. C. Craven, and A. L. Hicks, “The physical activity recall assessment for people with spinal cord injury: validity,” Medicine and Science in Sports and Exercise, vol. 38, no. 2, pp. 208–216, 2006.
[33]  R. A. Washburn, W. Zhu, E. McAuley, M. Frogley, and S. F. Figoni, “The physical activity scale for individuals with physical disabilities: development and evaluation,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 2, pp. 193–200, 2002.
[34]  A. L. Stewart, K. M. Mills, A. C. King, W. L. Haskell, D. Gillis, and P. L. Ritter, “CHAMPS physical activity questionnaire for older adults: outcomes for interventions,” Medicine and Science in Sports and Exercise, vol. 33, no. 7, pp. 1126–1141, 2001.
[35]  R. A. Washburn, E. McAuley, J. Katula, S. L. Mihalko, and R. A. Boileau, “The physical activity scale for the elderly (PASE): evidence for validity,” Journal of Clinical Epidemiology, vol. 52, no. 7, pp. 643–651, 1999.
[36]  L. Dipietro, C. J. Caspersen, A. M. Ostfeld, and E. R. Nadel, “A survey for assessing physical activity among older adults,” Medicine and Science in Sports and Exercise, vol. 25, no. 5, pp. 628–642, 1993.
[37]  J. H. Rimmer, “Exercise and physical activity in persons aging with a physical disability,” Physical Medicine and Rehabilitation Clinics of North America, vol. 16, no. 1, pp. 41–56, 2005.
[38]  A. P. Marsh, R. M. Vance, T. L. Frederick, S. A. Hesselmann, and W. J. Rejeski, “Objective assessment of activity in older adults at risk for mobility disability,” Medicine and Science in Sports and Exercise, vol. 39, no. 6, pp. 1020–1026, 2007.
[39]  E. V. Cyarto, A. M. Myers, and C. Tudor-Locke, “Pedometer accuracy in nursing home and community-dwelling older adults,” Medicine and Science in Sports and Exercise, vol. 36, no. 2, pp. 205–209, 2004.
[40]  K. L. Storti, K. K. Pettee, J. S. Brach, J. B. Talkowski, C. R. Richardson, and A. M. Kriska, “Gait speed and step-count monitor accuracy in community-dwelling older adults,” Medicine and Science in Sports and Exercise, vol. 40, no. 1, pp. 59–64, 2008.
[41]  K. F. Bjornson, B. Belza, D. Kartin, R. Logsdon, and J. F. McLaughlin, “Ambulatory physical activity performance in youth with cerebral palsy and youth who are developing typically,” Physical Therapy, vol. 87, no. 3, pp. 248–257, 2007.
[42]  R. W. Motl, E. M. Snook, and S. Agiovlasitis, “Does an accelerometer accurately measure steps taken under controlled conditions in adults with mild multiple sclerosis?” Disability and Health Journal, vol. 4, no. 1, pp. 52–57, 2011.
[43]  F. Harris, S. Sprigle, S. Eve Sonenblum, and C. L. Maurer, “The participation and activity measurement system: an example application among people who use wheeled mobility devices,” Disability and Rehabilitation, vol. 5, no. 1, pp. 48–57, 2010.
[44]  K. Patrick, Physical Activity Location Measurement System, 2010.
[45]  S. D. Herrmann, B. G. Ragan, C. B. Scott, et al., “Development and validation of a movement and activity in physical space (MAPS) score as a functional outcome measure,” Journal of Athletic Training, vol. 43, p. 2, 2008.
[46]  S. N. Patel, J. A. Kientz, and S. Gupta, “Studying the use and utility of an indoor location tracking system for non-experts,” in Pervasive 2010, P. Floreen, A. Kruger, and M. Spasojevic, Eds., pp. 228–245, Springer, Berlin, Germany, 2010.
[47]  J. H. Rimmer, “Health promotion for people with disabilities: the emerging paradigm shift from disability prevention to prevention of secondary conditions,” Physical Therapy, vol. 79, no. 5, pp. 495–502, 1999.
[48]  U.S. Department of Health and Human Services, The Surgeon General's Call to Action to Improve the Health and Wellness of Persons with Disabilities, Public Health Service, Rockville, Md, USA, 2005.
[49]  S. E. Boslaugh and E. M. Andresen, “Correlates of physical activity for adults with disability,” Preventing Chronic Disease, vol. 3, no. 3, p. A78, 2006.
[50]  Healthy People 2010: Understanding and Improving Health, U.S. Department of Health and Human Services, Washington, DC, USA, 2nd edition, 2000.
[51]  A. C. Buchholz, K. A. Martin Ginis, S. R. Bray, et al., “Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury,” Applied Physiology, Nutrition and Metabolism, vol. 34, no. 4, pp. 640–647, 2009.
[52]  I. Hutton, G. Gamble, G. Mclean, H. Butcher, P. Gow, and N. Dalbeth, “Obstacles to action in arthritis: a community case-control study,” International Journal of Rheumatic Diseases, vol. 12, no. 2, pp. 107–117, 2009.
[53]  R. W. Motl, “Physical activity and irreversible disability in multiple sclerosis,” Exercise and Sport Sciences Reviews, vol. 38, no. 4, pp. 186–191, 2010.
[54]  D. H. Saunders, C. A. Greig, G. E. Mead, and A. Young, “Physical fitness training for stroke patients,” Cochrane Database of Systematic Reviews (Online), no. 4, Article ID CD003316, 2009.
[55]  A. Forster, R. Lambley, and J. B. Young, “Is physical rehabilitation for older people in long-term care effective? findings from a systematic review,” Age and Ageing, vol. 39, no. 2, pp. 169–175, 2010.
[56]  L. D. Baker, L. L. Frank, K. Foster-Schubert, et al., “Effects of aerobic exercise on mild cognitive impairment: a controlled trial,” Archives of Neurology, vol. 67, no. 1, pp. 71–79, 2010.
[57]  R. S. Prakash, E. M. Snook, R. W. Motl, and A. F. Kramer, “Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis,” Brain Research, vol. 1341, pp. 41–51, 2010.
[58]  N. Owen, G. N. Healy, C. E. Matthews, and D. W. Dunstan, “Too much sitting: the population health science of sedentary behavior,” Exercise and Sport Sciences Reviews, vol. 38, no. 3, pp. 105–113, 2010.
[59]  D. W. Dunstan, E. L. M. Barr, G. N. Healy, et al., “Television viewing time and mortality: the australian diabetes, obesity and lifestyle study (AusDiab),” Circulation, vol. 121, no. 3, pp. 384–391, 2010.
[60]  C. A. Depp, D. A. Schkade, W. K. Thompson, and D. V. Jeste, “Age, affective experience, and television use,” American Journal of Preventive Medicine, vol. 39, pp. 173–178, 2010.
[61]  C. E. Matthews, K. Y. Chen, P. S. Freedson, et al., “Amount of time spent in sedentary behaviors in the United States, 2003-2004,” American Journal of Epidemiology, vol. 167, no. 7, pp. 875–881, 2008.
[62]  M. P. Buman, E. B. Hekler, W. L. Haskell, et al., “Objective light-intensity physical activity associations with rated health in older adults,” American Journal of Epidemiology, vol. 172, no. 10, pp. 1155–1165, 2010.
[63]  H. Beckerman, V. de Groot, M. A. Scholten, J. C. Kempen, and G. J. Lankhorst, “Physical activity behavior of people with multiple sclerosis: understanding how they can become more physically active,” Physical Therapy, vol. 90, no. 7, pp. 1001–1013, 2010.
[64]  S. Wilcox, C. Der Ananian, P. A. Sharpe, J. Robbins, and T. Brady, “Correlates of physical activity in persons with arthritis: review and recommendations,” Journal of Physical Activity and Health, vol. 2, pp. 230–252, 2005.
[65]  C. Der Ananian, S. Wilcox, K. Watkins, R. P. Saunders, and A. E. Evans, “Factors associated with exercise participation in adults with arthritis,” Journal of Aging and Physical Activity, vol. 16, no. 2, pp. 125–143, 2008.
[66]  D. D. Gutierrez, L. Thompson, B. Kemp, and S. J. Mulroy, “The relationship of shoulder pain intensity to quality of life, physical activity, and community participation in persons with paraplegia,” Journal of Spinal Cord Medicine, vol. 30, no. 3, pp. 251–255, 2007.
[67]  R. W. Motl, M. Weikert, Y. Suh, and D. Dlugonski, “Symptom cluster and physical activity in relapsing-remitting multiple sclerosis,” Research in Nursing & Health, vol. 33, no. 5, pp. 398–412, 2010.
[68]  N. F. Gordon, M. Gulanick, F. Costa, et al., “Physical activity and exercise recommendations for stroke survivors: an american heart association scientific statement from the council on clinical cardiology, subcommittee on exercise, cardiac rehabilitation, and prevention; the council on cardiovascular nursing; the council on nutrition, physical activity, and metabolism; and the stroke council,” Circulation, vol. 109, no. 16, pp. 2031–2041, 2004.
[69]  R. W. Motl, E. M. Snook, E. McAuley, and R. C. Gliottoni, “Symptoms, self-efficacy, and physical activity among individuals with multiple sclerosis,” Research in Nursing and Health, vol. 29, no. 6, pp. 597–606, 2006.
[70]  R. W. Motl, P. A. Arnett, M. M. Smith, F. H. Barwick, B. Ahlstrom, and E. J. Stover, “Worsening of symptoms is associated with lower physical activity levels in individuals with multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 1, pp. 140–142, 2008.
[71]  E. McAuley, S. M. White, L. Q. Rogers, R. W. Motl, and K. S. Courneya, “Physical activity and fatigue in breast cancer and multiple sclerosis: psychosocial mechanisms,” Psychosomatic Medicine, vol. 72, no. 1, pp. 88–96, 2010.
[72]  D. R. Brittain, N. C. Gyurcsik, M. McElroy, and S. A. Hillard, “General and arthritis-specific barriers to moderate physical activity in women with arthritis,” Womens Health Issues, vol. 21, no. 1, pp. 57–63, 2010.
[73]  B. Schoster, L. F. Callahan, A. Meier, T. Mielenz, and L. DiMartino, “The people with arthritis can exercise (PACE) program: a qualitative evaluation of participant satisfaction,” Preventing Chronic Disease, vol. 2, no. 3, p. A11, 2005.
[74]  C. J. Wong, D. Goodridge, D. D. Marciniuk, and D. Rennie, “Fatigue in patients with COPD participating in a pulmonary rehabilitation program,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 5, pp. 319–326, 2010.
[75]  A. E. Tawashy, J. J. Eng, K. H. Lin, P. F. Tang, and C. Hung, “Physical activity is related to lower levels of pain, fatigue and depression in individuals with spinal-cord injury: a correlational study,” Spinal Cord, vol. 47, no. 4, pp. 301–306, 2009.
[76]  N. A. Allen, “Social cognitive theory in diabetes exercise research: an integrative literature review,” Diabetes Educator, vol. 30, no. 5, pp. 805–819, 2004.
[77]  S. Ferrier, N. Dunlop, and C. Blanchard, “The role of outcome expectations and self-efficacy in explaining physical activity behaviors of individuals with multiple sclerosis,” Behavioral Medicine, vol. 36, no. 1, pp. 7–11, 2010.
[78]  M. Vissers, R. van den Berg-Emons, T. Sluis, M. Bergen, H. Stam, and H. Bussmann, “Barriers to and facilitators of everyday physical activity in persons with a spinal cord injury after discharge from the rehabilitation centre,” Journal of Rehabilitation Medicine, vol. 40, no. 6, pp. 461–467, 2008.
[79]  N. Stroud, C. Minahan, and S. Sabapathy, “The perceived benefits and barriers to exercise participation in persons with multiple sclerosis,” Disability and Rehabilitation, vol. 31, no. 26, pp. 2216–2222, 2009.
[80]  L. R. Brawley, W. J. Rejeski, and A. C. King, “Promoting physical activity for older adults: the challenges for changing behavior,” American Journal of Preventive Medicine, vol. 25, no. 3, supplement 2, pp. 172–183, 2003.
[81]  T. J. Bartuska, “The built environment: definition and scope,” in The Built Environment: A Collaborative Inquiry into Design and Planning, W. R. McClure and T. J. Bartuska, Eds., Wiley, Hoboken, NJ, USA, 2007.
[82]  P. Clarke, J. A. Ailshire, M. Bader, J. D. Morenoff, and J. S. House, “Mobility disability and the urban built environment,” American Journal of Epidemiology, vol. 168, no. 5, pp. 506–513, 2008.
[83]  J. R. Beard, S. Blaney, M. Cerda, et al., “Neighborhood characteristics and disability in older adults,” Journals of Gerontology B, vol. 64, no. 2, pp. 252–257, 2009.
[84]  J. H. Rimmer, B. Riley, E. Wang, A. Rauworth, and J. Jurkowski, “Physical activity participation among persons with disabilities: barriers and facilitators,” American Journal of Preventive Medicine, vol. 26, no. 5, pp. 419–425, 2004.
[85]  S. E. Doerksen, R. W. Motl, and E. McAuley, “Environmental correlates of physical activity in multiple sclerosis: a cross-sectional study,” International Journal of Behavioral Nutrition and Physical Activity, vol. 4, p. 49, 2007.
[86]  D. White, A. M. Jette, D. T. Felson, et al., “Are features of the neighborhood environment associated with disability in older adults?” Disability and Rehabilitation, vol. 32, no. 8, pp. 639–645, 2010.
[87]  H. Liang, K. Tomey, D. Chen, N. L. Savar, J. H. Rimmer, and C. L. Braunschweig, “Objective measures of neighborhood environment and self-reported physical activity in spinal cord injured men,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 8, pp. 1468–1473, 2008.
[88]  G. Whiteneck, M. A. Meade, M. Dijkers, D. G. Tate, T. Bushnik, and M. B. Forchheimer, “Environmental factors and their role in participation and life satisfaction after spinal cord injury,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 11, pp. 1793–1803, 2004.
[89]  J. J. Keysor, A. M. Jette, W. Coster, J. P. Bettger, and S. M. Haley, “Association of environmental factors with levels of home and community participation in an adult rehabilitation cohort,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 12, pp. 1566–1575, 2006.
[90]  J. F. Sallis, R. B. Cervero, W. Ascher, K. A. Henderson, M. K. Kraft, and J. Kerr, “An ecological approach to creating active living communities,” Annual Review of Public Health, vol. 27, pp. 297–322, 2006.
[91]  A. Shumway-Cook, A. Patla, A. Stewart, L. Ferrucci, M. A. Ciol, and J. M. Guralnik, “Environmental components of mobility disability in community-living older persons,” Journal of the American Geriatrics Society, vol. 51, no. 3, pp. 393–398, 2003.
[92]  M. Rantakokko, M. Manty, S. Iwarsson, et al., “Fear of moving outdoors and development of outdoor walking difficulty in older people: clinical Investigations,” Journal of the American Geriatrics Society, vol. 57, no. 4, pp. 634–640, 2009.
[93]  G. G. Whiteneck, C. L. Harrison-Felix, D. C. Mellick, C. A. Brooks, S. B. Charlifue, and K. A. Gerhart, “Quantifying environmental factors: a measure of physical, attitudinal, service, productivity, and policy barriers,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 8, pp. 1324–1335, 2004.
[94]  T. R. Frieden, “A framework for public health action: the health impact pyramid,” American Journal of Public Health, vol. 100, no. 4, pp. 590–595, 2010.
[95]  M. Bird, K. Hill, M. Ball , et al., “The long-term benefits of a multi-component exercise intervention to balance and mobility in healthy older adults: relationship between physical functioning and physical activity in the lifestyle interventions and independence for elders pilot,” Archives of Gerontology and Geriatrics, vol. 58, no. 10, pp. 1918–1924, 2010.
[96]  M. E. Cress, D. M. Buchner, T. Prohaska, et al., “Best practices for physical activity programs and behavior counseling in older adult populations,” Journal of Aging and Physical Activity, vol. 13, no. 1, pp. 61–74, 2005.
[97]  V. Conn, A. Hafdahl, S. Moore, P. Nielsen, and L. Brown, “Meta-analysis of interventions to increase physical activity among cardiac subjects,” International Journal of Cardiology, vol. 133, no. 3, pp. 307–320, 2009.
[98]  V. Conn, A. Hafdahl, M. Minor, and P. Nielsen, “Physical activity interventions among adults with arthritis: meta-analysis of outcomes,” Seminars in Arthritis and Rheumatism, vol. 37, no. 5, pp. 307–316, 2008.
[99]  V. Conn, A. Hafdahl, D. Porock, R. McDaniel, and P. Nielsen, “A meta-analysis of exercise interventions among people treated for cancer,” Supportive Care in Cancer, vol. 14, no. 7, pp. 699–712, 2006.
[100]  T. Ruppar and V. Conn, “Interventions to promote physical activity in chronically ill adults,” American Journal of Nursing, vol. 110, no. 7, pp. 30–37, 2010.
[101]  T. Yan, K. H. Wilber, J. Wieckowski, and W. J. Simmons, “Results from the healthy moves for aging well program: changes of the health outcomes,” Home Health Care Services Quarterly, vol. 28, no. 2-3, pp. 100–111, 2009.
[102]  A. Marsh, E. Chmelo, J. Katula, S. Mihalko, and W. Jack Rejeski, “Should physical activity programs be tailored when older adults have compromised function?” Journal of Aging and Physical Activity, vol. 17, no. 3, pp. 294–306, 2009.
[103]  R. W. Motl, “Physical activity and irreversible disability in multiple sclerosis,” Exercise and Sport Sciences Reviews, vol. 38, no. 4, pp. 186–191, 2010.
[104]  R. W. Motl, E. McAuley, S. Doerksen, L. Hu, and K. S. Morris, “Preliminary evidence that self-efficacy predicts physical activity in multiple sclerosis,” International Journal of Rehabilitation Research, vol. 32, no. 3, pp. 260–263, 2009.
[105]  M. A. Plow, L. Resnik, and S. M. Allen, “Exploring physical activity behaviour of persons with multiple sclerosis: a qualitative pilot study,” Disability and Rehabilitation, vol. 31, no. 20, pp. 1652–1665, 2009.
[106]  M. L. Finlayson and E. W. Peterson, “Falls, aging, and disability,” Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 2, pp. 357–373, 2010.
[107]  C. M. Dean, C. Rissel, M. Sharkey, et al., “Exercise intervention to prevent falls and enhance mobility in community dwellers after stroke: a protocol for a randomised controlled trial,” BMC Neurology, vol. 9, p. 38, 2009.
[108]  J. Davis, M. Robertson, M. Ashe, T. Liu-Ambrose, K. M. Khan, and C. A. Marra, “Does a home-based strength and balance programme in people aged > or =80 years provide the best value for money to prevent falls? a systematic review of economic evaluations of falls prevention interventions,” British Journal of Sports Medicine, vol. 44, no. 2, pp. 80–89, 2010.
[109]  R. T. Ackermann, B. Williams, H. Q. Nguyen, E. M. Berke, M. L. Maciejewski, and J. P. LoGerfo, “Healthcare cost differences with participation in a community-based group physical activity benefit for medicare managed care health plan members,” Journal of the American Geriatrics Society, vol. 56, no. 8, pp. 1459–1465, 2008.
[110]  S. L. Hughes, R. B. Seymour, R. T. Campbell, P. Desai, G. Huber, and H. J. Chang, “Fit and strong!: bolstering maintenance of physical activity among older adults with lower-extremity osteoarthritis,” American Journal of Health Behavior, vol. 34, no. 6, pp. 750–763, 2010.
[111]  M. L. Boutaugh, “Arthritis foundation community-based physical activity programs: effectiveness and implementation issues,” Arthritis Care and Research, vol. 49, no. 3, pp. 463–470, 2003.
[112]  M. Bruno, S. Cummins, L. Gaudiano, J. Stoos, and P. Blanpied, “Effectiveness of two arthritis foundation programs: walk with ease, and you can break the pain cycle,” Clinical Interventions in Aging, vol. 1, no. 3, pp. 295–306, 2006.
[113]  K. R. Lorig, D. S. Sobel, A. L. Stewart, et al., “Evidence suggesting that a chronic disease self-management program can improve health status while reducing hospitalization: a randomized trial,” Medical Care, vol. 37, no. 1, pp. 5–14, 1999.
[114]  L. Ehrlich-Jones, T. Mallinson, H. Fischer, et al., “Increasing physical activity in patients with arthritis: a tailored health promotion program,” Chronic Illness, vol. 6, no. 4, pp. 272–281, 2010.
[115]  G. J. Norman, M. F. Zabinski, M. A. Adams, D. E. Rosenberg, A. L. Yaroch, and A. A. Atienza, “A review of ehealth interventions for physical activity and dietary behavior change,” American Journal of Preventive Medicine, vol. 33, no. 4, pp. 336–347, 2007.
[116]  N. Kaufman, “Internet and information technology use in treatment of diabetes: advanced technologies and treatments for diabetes,” International Journal of Clinical Practice, vol. 64, no. 166, pp. 41–46, 2010.
[117]  V. Fung, K. So, E. Park, et al., “The utility of a video game system in rehabilitation of burn and nonburn patients: a survey among occupational therapy and physiotherapy practitioners,” Journal of Burn Care & Research, vol. 33, no. 5, pp. 768–775, 2010.
[118]  M. A. Williams, R. L. Soiza, A. M. Jenkinson, and A. Stewart, “EXercising with computers in later life (EXCELL)—pilot and feasibility study of the acceptability of the Nintendo(R) WiiFit in community-dwelling fallers,” BMC Research Notes, vol. 3, p. 238, 2010.
[119]  L. Yong Joo, T. Soon Yin, D. Xu, et al., “A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke,” Journal of Rehabilitation Medicine, vol. 42, no. 5, pp. 437–441, 2010.
[120]  B. S. Lange, P. Requejo, S. M. Flynn, et al., “The potential of virtual reality and gaming to assist successful aging with disability,” Physical Medicine and Rehabilitation Clinics of North America, vol. 21, no. 2, pp. 339–356, 2010.
[121]  D. Rosenberg, C. A. Depp, I. V. Vahia, et al., “Exergames for subsyndromal depression in older adults: a pilot study of a novel intervention,” The American Journal of Geriatric Psychiatry, vol. 18, no. 3, pp. 221–226, 2010.
[122]  G. W. Heath, R. C. Brownson, J. Kruger, et al., “The effectiveness of urban design and land use and transport policies and practices to increase physical activity: a systematic review,” Journal of Aging and Physical Activity, vol. 3, pp. S55–S76, 2006.
[123]  A. L. Dannenberg, R. J. Jackson, H. Frumkin, et al., “The impact of community design and land-use choices on public health: a scientific research agenda,” American Journal of Public Health, vol. 93, no. 9, pp. 1500–1508, 2003.
[124]  I. A. Lang, D. J. Llewellyn, K. M. Langa, R. B. Wallace, and D. Melzer, “Neighbourhood deprivation and incident mobility disability in older adults,” Age and Ageing, vol. 37, no. 4, pp. 403–410, 2008.
[125]  H. W. Wahl, A. Fange, F. Oswald, L. N. Gitlin, and S. Iwarsson, “The home environment and disability-related outcomes in aging individuals: what is the empirical evidence?” Gerontologist, vol. 49, no. 3, pp. 355–367, 2009.
[126]  W. Kerstin, B. Gabriele, and L. Richard, “What promotes physical activity after spinal cord injury? An interview study from a patient perspective,” Disability and Rehabilitation, vol. 28, no. 8, pp. 481–488, 2006.
[127]  J. H. Rimmer, A. Rauworth, E. Wang, P. S. Heckerling, and B. S. Gerber, “A randomized controlled trial to increase physical activity and reduce obesity in a predominantly African American group of women with mobility disabilities and severe obesity,” Preventive Medicine, vol. 48, no. 5, pp. 473–479, 2009.
[128]  D. E. Crews and S. Zavotka, “Aging, disability, and frailty: implications for universal design,” Journal of Physiological Anthropology, vol. 25, no. 1, pp. 113–118, 2006.
[129]  U.S. Environmental Protection Agency, Building Healthy Communities for Active Aging, 2010.
[130]  Global Age Friendly Cities: A Guide, World Health Organization, Geneva, Switzerland, 2007.
[131]  J. Lynott, J. Haase, K. Nelson, et al., Planning Complete Streets for an Aging America, AARP Public Policy Institute, Washington, DC, USA, 2009.
[132]  “Evidence-based disease and disability prevention program,” http://www.aoa.gov/AoARoot/AoA_Programs/HPW/Evidence_Based/index.aspx#funding.
[133]  Centers for Disease Control and Prevention Healthy Aging Network, Creating Aging-Friendly Communities, 2010.
[134]  S. C. Webber, M. M. Porter, and V. H. Menec, “Mobility in older adults: a comprehensive framework,” The Gerontologist, vol. 50, no. 4, pp. 443–450, 2010.
[135]  M. G. Stineman and J. E. Streim, “The biopsycho-ecological paradigm: a foundational theory for medicine,” PMR, vol. 2, no. 11, pp. 1035–1045, 2010.
[136]  A. M. Jette and J. J. Keysor, “Disability models: implications for arthritis exercise and physical activity interventions,” Arthritis & Rheumatism, vol. 49, no. 1, pp. 114–120, 2003.
[137]  A. K. Stuifbergen, “Building health promotion interventions for persons with chronic disabling conditions,” Family and Community Health, vol. 29, supplement 1, pp. 28S–34S, 2006.
[138]  U.S. Department of Health and Human Services, Multiple Chronic Conditions—A Strategic Framework: Optimum Health and Quality of Life for Individuals with Multiple Chronic Conditions, Washington, DC, USA, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133