全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Balance, Sensorimotor, and Cognitive Performance in Long-Year Expert Senior Ballroom Dancers

DOI: 10.4061/2011/176709

Full-Text   Cite this paper   Add to My Lib

Abstract:

Physical fitness is considered a major factor contributing to the maintenance of independent living and everyday competence. In line with this notion, it has been shown that several years of amateur dancing experience can exert beneficial effects not only on balance and posture but also on tactile, motor, and cognitive functions in older people. This raises the question of whether an even more extensive schedule of dancing, including competitive tournaments, would further enhance these positive effects. We therefore assessed posture, balance, and reaction times, as well as motor, tactile, and cognitive performance in older expert ballroom dancers with several years of competitive experience. We found substantially better performance in the expert group than in the controls in terms of expertise-related domains like posture, balance, and reaction times. However, there was no generalization of positive effects to those domains that were found to be improved in amateur dancers, such as tactile and cognitive performance, suggesting that there might be an optimal range of intervention intensity to maintain health and independence throughout the human lifespan. 1. Background In addition to a general decline in physical fitness [1], the aging process is accompanied by a progressive decline in perception, motor behavior, cognition, and memory functions [2–4]. Therefore, the preservation of everyday life skills and the maintenance of independent living become increasingly important with advancing age. It is well established that physical fitness is intimately associated with cognitive performance in the elderly [5–9]. Consequently, high levels of physical fitness have been assumed to be a major factor contributing to the maintenance of independent living and everyday competence. One of the basic accomplishments of gerontology is the recognition of the tremendous heterogeneity and interindividual variability in the elderly [10]. Thus, the emergence of age-related decline can be highly variable between individuals [2], and there are notable differences in the interindividual performance of general skills at advanced ages. It seems that, aged individuals can maintain high levels of proficiency in certain domains involving cognitive-motor functions such as golf or piano playing. This gave rise to an intriguing question: how is proficiency in one domain of expertise, like playing piano, associated with performance in general? (for review, see [4]). Older experts show little or no age-related decline in tasks related to their area of expertise, but beyond that they

References

[1]  A. S. Singh, M. Chin A Paw, R. J. Bosscher, and W. Van Mechelen, “Cross-sectional relationship between physical fitness components and functional performance in older persons living in long-term care facilities,” BMC Geriatrics, vol. 6, article 4, 2006.
[2]  K. U. Mayer and P. B. Baltes, Die Berliner Altersstudie, Akademie Verlag, Berlin, Germany, 1996.
[3]  H. R. Dinse, M. Tegenthoff, C. Heinisch, and T. Kalisch, “Ageing and touch,” in The Sage Encyclopedia of Perception, B. Goldstein, Ed., pp. 21–24, Sage, Thousand Oaks, Calif, USA, 2009.
[4]  R. T. Krampe, “Aging, expertise and fine motor movement,” Neuroscience and Biobehavioral Reviews, vol. 26, no. 7, pp. 769–776, 2002.
[5]  C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58–65, 2008.
[6]  A. Sumic, Y. L. Michael, N. E. Carlson, D. B. Howieson, and J. A. Kaye, “Physical activity and the risk of dementia in oldest old,” Journal of Aging and Health, vol. 19, no. 2, pp. 242–259, 2007.
[7]  J. Rowe and R. Kahn, “Successful aging,” Gerontologist, vol. 37, no. 4, pp. 433–440, 1997.
[8]  C. Voelcker-Rehage, B. Godde, and U. M. Staudinger, “Physical and motor fitness are both related to cognition in old age,” European Journal of Neuroscience, vol. 31, no. 1, pp. 167–176, 2010.
[9]  A. F. Kramer, S. Hahn, N. J. Cohen et al., “Ageing, fitness and neurocognitive function,” Nature, vol. 400, no. 6743, pp. 418–419, 1999.
[10]  P. Rapp and D. Amaral, “Individual differences in the cognitive and neurobiological consequences of normal aging,” Trends in Neurosciences, vol. 15, no. 9, pp. 340–345, 1992.
[11]  R. Krampe and K. Ericsson, “Maintaining excellence: deliberate practice and elite performance in young and older pianists,” Journal of Experimental Psychology: General, vol. 125, no. 4, pp. 331–359, 1996.
[12]  J. C. Kattenstroth, I. Kolankowska, T. Kalisch, and H. R. Dinse, “Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities,” Frontiers in Aging Neuroscience, vol. 2, p. 31, 2010.
[13]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[14]  Y. Koutedakis and A. Jamurtas, “The dancer as a performing athlete: physiological considerations,” Sports Medicine, vol. 34, no. 10, pp. 651–661, 2004.
[15]  K. A. Ericsson, R. T. Krampe, and C. Tesch-R?mer, “The role of deliberate practice in the acquisition of expert performance,” Psychological Review, vol. 100, no. 3, pp. 363–406, 1993.
[16]  T. Kalisch, R. Richter, M. Lenz, et al., “Questionnaire-based evaluation of everyday competence in older adults,” Journal of Clinical Interventions in Aging, vol. 6, pp. 37–46, 2011.
[17]  S. L. Willis, “Cognitive training and everyday competence,” Annual Review of Gerontology & Geriatrics, vol. 7, pp. 159–188, 1987.
[18]  M. P. Lawton and E. M. Brody, “Assessment of older people: self-maintaining and instrumental activities of daily living,” Gerontologist, vol. 9, no. 3, pp. 179–186, 1969.
[19]  J. C. Raven, Progressive Matrices, Lewis & Co., London, UK, 1938.
[20]  G. Gatterer, P. Fischer, M. Simanyi, and W. Danielczyk, “The A-K-T (“Alters-konzentrations-test”) a new psychometric test for geriatric patients,” Functional Neurology, vol. 4, no. 3, pp. 273–276, 1989.
[21]  G. Gatterer, Alters-Konzentrations-Test (AKT). Handanweisung, Hogrefe, G?ttingen, Germany, 1990.
[22]  J. Alegria and P. Bertelson, “Time uncertainty, number of alternatives and particular signal-response pair as determinantof choice reaction time,” Acta Psychologica, vol. 33, no. C, pp. 36–44, 1970.
[23]  D. J. Lanska and C. G. Goetz, “Romberg's sign: development, adoption, and adaptation in the 19th century,” Neurology, vol. 55, no. 8, pp. 1201–1206, 2000.
[24]  D. Podsiadlo and S. Richardson, “The timed “Up and Go”: a test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142–148, 1991.
[25]  M. E. Tinetti, “Performance-oriented assessment of mobility problems in elderly patients,” Journal of the American Geriatrics Society, vol. 34, no. 2, pp. 119–126, 1986.
[26]  D. J. Goble, J. P. Coxon, N. Wenderoth, A. Van Impe, and S. P. Swinnen, “Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 3, pp. 271–278, 2009.
[27]  H. R. Dinse, “Cortical reorganization in the aging brain,” Progress in Brain Research, vol. 157, pp. 57–80, 2006.
[28]  T. Kalisch, P. Ragert, P. Schwenkreis, H. R. Dinse, and M. Tegenthoff, “Impaired tactile acuity in old age is accompanied by enlarged hand representations in somatosensory cortex,” Cerebral Cortex, vol. 19, no. 7, pp. 1530–1538, 2009.
[29]  T. Kalisch, M. Tegenthoff, and H. R. Dinse, “Differential effects of synchronous and asynchronous multifinger coactivation on human tactile performance,” BMC Neuroscience, vol. 8, article 58, 2007.
[30]  H. R. Dinse, N. Kleibel, T. Kalisch, P. Ragert, C. Wilimzig, and M. Tegenthoff, “Tactile coactivation resets age-related decline of human tactile discrimination,” Annals of Neurology, vol. 60, no. 1, pp. 88–94, 2006.
[31]  J. Cohen, Statistical Power Analysis for the Behavioral Science, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1988.
[32]  J. Raven, “The Raven's progressive matrices: change and stability over culture and time,” Cognitive Psychology, vol. 41, no. 1, pp. 1–48, 2000.
[33]  T. W. Buford and T. M. Manini, “Sedentary individuals as “controls” in human studies: the correct approach?” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, p. E134, 2010.
[34]  B. Haslinger, P. Erhard, E. Altenmüller et al., “Reduced recruitment of motor association areas during bimanual coordination in concert pianists,” Human Brain Mapping, vol. 22, no. 3, pp. 206–215, 2004.
[35]  J. Doyon and H. Benali, “Reorganization and plasticity in the adult brain during learning of motor skills,” Current Opinion in Neurobiology, vol. 15, no. 2, pp. 161–167, 2005.
[36]  J. H?nggi, S. Koeneke, L. Bezzola, and L. J?ncke, “Structural neuroplasticity in the sensorimotor network of professional female ballet dancers,” Human Brain Mapping, vol. 31, no. 8, pp. 1196–1206, 2010.
[37]  G. Sofianidis, V. Hatzitaki, S. Douka, and G. Grouios, “Effect of a 10-week traditional dance program on static and dynamic balance control in elderly adults,” Journal of Aging and Physical Activity, vol. 17, no. 2, pp. 167–180, 2009.
[38]  J. G. Zhang, K. Ishikawa-Takata, H. Yamazaki, T. Morita, and T. Ohta, “Postural stability and physical performance in social dancers,” Gait and Posture, vol. 27, no. 4, pp. 697–701, 2008.
[39]  H. W. Mahncke, B. B. Connor, J. Appelman et al., “Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12523–12528, 2006.
[40]  S. J. Colcombe, A. F. Kramer, K. I. Erickson et al., “Cardiovascular fitness, cortical plasticity, and aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3316–3321, 2004.
[41]  S. Sch?fer, O. Huxhold, and U. Lindenberger, “Healthy mind in healthy body? A review of sensorimotor—cognitive interdependencies in old age,” European Review of Aging and Physical Activity, vol. 3, no. 2, pp. 45–54, 2006.
[42]  S. J. Colcombe, K. I. Erickson, P. E. Scalf et al., “Aerobic exercise training increases brain volume in aging humans,” Journals of Gerontology—Series A, vol. 61, no. 11, pp. 1166–1170, 2006.
[43]  G. Deley, G. Kervio, J. Van Hoecke, B. Verges, B. Grassi, and J. M. Casillas, “Effects of a one-year exercise training program in adults over 70 years old: a study with a control group,” Aging—Clinical and Experimental Research, vol. 19, no. 4, pp. 310–315, 2007.
[44]  S. A. Neeper, F. Gomez-Pinilla, J. Choi, and C. Cotman, “Exercise and brain neurotrophins,” Nature, vol. 373, no. 6510, p. 109, 1995.
[45]  J. D. Churchill, R. Galvez, S. Colcombe, R. A. Swain, A. F. Kramer, and W. T. Greenough, “Exercise, experience and the aging brain,” Neurobiology of Aging, vol. 23, no. 5, pp. 941–955, 2002.
[46]  A. F. Kramer, K. I. Erickson, and S. J. Colcombe, “Exercise, cognition, and the aging brain,” Journal of Applied Physiology, vol. 101, no. 4, pp. 1237–1242, 2006.
[47]  S. Vaynman and F. Gomez-Pinilla, “Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity,” Journal of Neuroscience Research, vol. 84, no. 4, pp. 699–715, 2006.
[48]  D. Young, P. A. Lawlor, P. Leone, M. Dragunow, and M. J. During, “Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective,” Nature Medicine, vol. 5, no. 4, pp. 448–453, 1999.
[49]  T. Pham, B. Winblad, A. Granholm, and A. Mohammed, “Environmental influences on brain neurotrophins in rats,” Pharmacology Biochemistry and Behavior, vol. 73, no. 1, pp. 167–175, 2002.
[50]  M. P. Mattson, W. Duan, R. Wan, and Z. Guo, “Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations,” NeuroRx, vol. 1, no. 1, pp. 111–116, 2004.
[51]  M. P. Mattson, “Hormesis defined,” Ageing Research Reviews, vol. 7, no. 1, pp. 1–7, 2008.
[52]  J. C. Kattenstroth, T. Kalisch, S. K. Holt, M. Tegenthoff, and H. R. Dinse, “Beneficial effects of a six-months dance class on sensorimotor and cognitive performance of elderly individuals,” in Proceedings of the Neuroscience Meeting Planner, Society for Neuroscience, Chicago, Ill, USA, 2009.
[53]  E. Hui, B. T. K. Chui, and J. Woo, “Effects of dance on physical and psychological well-being in older persons,” Archives of Gerontology and Geriatrics, vol. 49, no. 1, pp. e45–e50, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133