全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Age-Related White Matter Changes

DOI: 10.4061/2011/617927

Full-Text   Cite this paper   Add to My Lib

Abstract:

Age-related white matter changes (WMC) are considered manifestation of arteriolosclerotic small vessel disease and are related to age and vascular risk factors. Most recent studies have shown that WMC are associated with a host of poor outcomes, including cognitive impairment, dementia, urinary incontinence, gait disturbances, depression, and increased risk of stroke and death. Although the clinical relevance of WMC has been extensively studied, to date, only very few clinical trials have evaluated potential symptomatic or preventive treatments for WMC. In this paper, we reviewed the current understanding in the pathophysiology, epidemiology, clinical importance, chemical biomarkers, and treatments of age-related WMC. 1. Introduction Age-related white matter changes (WMC) are prevalent findings among the elderly.WMC are considered to be etiologically related to cerebral small vessel disease and are important substrates for cognitive impairment and functional loss in the elderly [1].Although extensive studies have investigated various aspects on WMC, controversies still exist in the pathophysiology and clinical phenotypes, and consensus regarding to treatments for WMC has not been reached.In this paper, we aimed to provide an update review on the epidemiology, pathophysiology, neuroimaging, clinical importance, chemical biomarkers, and treatments of age-related WMC. The literature search was conducted using the National Center for Biotechnology Information (NCBI) PubMed/Medline to identify relevant articles related to WMC that were published until June 2011. We used the following keywords for the search: white matter, white matter changes, white matter lesions, leukoaraiosis, white matter hyperintensities, and small vessel disease. The articles were included in this paper if (1) the journal article was published in English and (2) they were related to epidemiology, pathophysiology, neuroimaging, genetics, clinical phenotypes, biomarkers, and treatment of WMC. Further searches on bibliographies in the main articles and relevant papers were performed. 2. Prevalence and Risk Factors WMC are almost endemic in community elderly with prevalence ranging from 50% to 98% [2–6]. In stroke patients, prevalence of WMC varies from 67% to 98% [7–10]. In Alzheimer’s disease, WMC are also common with prevalence ranges from 28.9% to 100% [11–13]. About 30–55% of patients with Parkinson’s disease (PD) also harbor WMC [14–16]. Age [2, 4, 6, 17–20] and hypertension [3, 18, 20–30] are established risk factors for WMC. A recent Manhattan study in community elderly found that

References

[1]  L. Pantoni, “Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges,” The Lancet Neurology, vol. 9, no. 7, pp. 689–701, 2010.
[2]  W. T. Longstreth Jr., T. A. Manolio, A. Arnold et al., “Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study,” Stroke, vol. 27, no. 8, pp. 1274–1282, 1996.
[3]  D. Liao, L. Cooper, J. Cai et al., “Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC study,” Stroke, vol. 27, no. 12, pp. 2262–2270, 1996.
[4]  F. E. de Leeuw, J. C. de Groot, E. Achten et al., “Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 1, pp. 9–14, 2001.
[5]  W. Wen, P. S. Sachdev, J. J. Li, X. Chen, and K. J. Anstey, “White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44–48,” Human Brain Mapping, vol. 30, no. 4, pp. 1155–1167, 2009.
[6]  L. J. Launer, K. Berger, M. M. B. Breteler et al., “Regional variability in the prevalence of cerebral white matter lesions: an MRI study in 9 European countries (CASCADE),” Neuroepidemiology, vol. 26, no. 1, pp. 23–29, 2005.
[7]  R. Mantyla, H. J. Aronen, O. Salonen et al., “The prevalence and distribution of white-matter changes on different MRI pulse sequences in a post-stroke cohort,” Neuroradiology, vol. 41, no. 9, pp. 657–665, 1999.
[8]  J. H. Fu, C. Z. Lu, Z. Hong, Q. Dong, Y. Luo, and K. S. Wong, “Extent of white matter lesions is related to acute subcortical infarcts and predicts further stroke risk in patients with first ever ischaemic stroke,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 6, pp. 793–796, 2005.
[9]  W. K. Tang, S. S. Chan, H. F. Chiu et al., “Frequency and determinants of poststroke dementia in Chinese,” Stroke, vol. 35, no. 4, pp. 930–935, 2004.
[10]  J. Jimenez-Conde, A. Biffi, R. Rahman et al., “Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke,” Stroke, vol. 41, no. 3, pp. 437–442, 2010.
[11]  J. Aharon-Peretz, J. L. Cummings, and M. A. Hill, “Vascular dementia and dementia of the Alzheimer type. Cognition, ventricular size, and leuko-araiosis,” Archives of Neurology, vol. 45, no. 7, pp. 719–721, 1988.
[12]  F. E. de Leeuw, F. Barkhof, and P. Scheltens, “White matter lesions and hippocampal atrophy in Alzheimer's disease,” Neurology, vol. 62, no. 2, pp. 310–312, 2004.
[13]  M. Targosz-Gajniak, J. Siuda, S. Ochudlo, and G. Opala, “Cerebral white matter lesions in patients with dementia—from MCI to severe Alzheimer's disease,” Journal of the Neurological Sciences, vol. 283, no. 1-2, pp. 79–82, 2009.
[14]  S. J. Lee, J. S. Kim, K. S. Lee et al., “The severity of leukoaraiosis correlates with the clinical phenotype of Parkinson's disease,” Archives of Gerontology and Geriatrics, vol. 49, no. 2, pp. 255–259, 2009.
[15]  J. Slawek, D. Wieczorek, M. Derejko et al., “The influence of vascular risk factors and white matter hyperintensities on the degree of cognitive impairment in Parkinson's disease,” Neurologia i Neurochirurgia Polska, vol. 42, no. 6, pp. 505–512, 2008.
[16]  Y. H. Sohn and J. S. Kim, “The influence of white matter hyperintensities on the clinical features of parkinson's disease,” Yonsei Medical Journal, vol. 39, no. 1, pp. 50–55, 1998.
[17]  H. S. Jorgensen, H. Nakayama, H. O. Raaschou, and T. S. Olsen, “Leukoaraiosis in stroke patients: the Copenhagen stroke study,” Stroke, vol. 26, no. 4, pp. 588–592, 1995.
[18]  D. Liao, L. Cooper, J. Cai et al., “The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC study,” Neuroepidemiology, vol. 16, no. 3, pp. 149–162, 1997.
[19]  H. Henon, O. Godefroy, C. Lucas, J. P. Pruvo, and D. Leys, “Risk factors and leukoaraiosis in stroke patients,” Acta Neurologica Scandinavica, vol. 94, no. 2, pp. 137–144, 1996.
[20]  A. M. Basile, L. Pantoni, G. Pracucci et al., “Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes. The LADIS (Leukoaraiosis and Disability in the Elderly) study,” Cerebrovascular Diseases, vol. 21, no. 5-6, pp. 315–322, 2006.
[21]  J. C. van Swieten, G. G. Geyskes, M. M. Derix et al., “Hypertension in the elderly is associated with white matter lesions and cognitive decline,” Annals of Neurology, vol. 30, no. 6, pp. 825–830, 1991.
[22]  H. S. Choi, Y. M. Cho, J. H. Kang, C. S. Shin, K. S. Park, and H. K. Lee, “Cerebral white matter hyperintensity is mainly associated with hypertension among the components of metabolic syndrome in Koreans,” Clinical Endocrinology, vol. 71, no. 2, pp. 184–188, 2009.
[23]  M. K. Park, I. Jo, M. H. Park, T. K. Kim, S. A. Jo, and C. Shin, “Cerebral white matter lesions and hypertension status in the elderly Korean: the Ansan Study,” Archives of Gerontology and Geriatrics, vol. 40, no. 3, pp. 265–273, 2005.
[24]  E. J. van Dijk, M. M. Breteler, R. Schmidt et al., “The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study,” Hypertension, vol. 44, no. 5, pp. 625–630, 2004.
[25]  F. E. de Leeuw, J. C. de Groot, M. Oudkerk et al., “Hypertension and cerebral white matter lesions in a prospective cohort study,” Brain, vol. 125, no. 4, pp. 765–772, 2002.
[26]  C. Sierra, “Cerebral white matter lesions in essential hypertension,” Current Hypertension Reports, vol. 3, no. 5, pp. 429–433, 2001.
[27]  L. H. Kuller, K. L. Margolis, S. A. Gaussoin et al., “Relationship of hypertension, blood pressure, and blood pressure control with white matter abnormalities in the Women's Health Initiative Memory Study (WHIMS)—MRI trial,” Journal of Clinical Hypertension, vol. 12, no. 3, pp. 203–212, 2010.
[28]  C. Dufouil, A. de Kersaint-Gilly, V. Besancon et al., “Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI cohort,” Neurology, vol. 56, no. 7, pp. 921–926, 2001.
[29]  T. Jeerakathil, P. A. Wolf, A. Beiser et al., “Stroke risk profile predicts white matter hyperintensity volume: the Framingham study,” Stroke, vol. 35, no. 8, pp. 1857–1861, 2004.
[30]  M. Vuorinen, A. Solomon, S. Rovio et al., “Changes in vascular risk factors from midlife to late life and white matter lesions: a 20-year follow-up study,” Dementia and Geriatric Cognitive Disorders, vol. 31, no. 2, pp. 119–125, 2011.
[31]  A. M. Brickman, C. Reitz, J. A. Luchsinger et al., “Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort,” Archives of Neurology, vol. 67, no. 5, pp. 564–569, 2010.
[32]  D. Carmelli, C. DeCarli, G. E. Swan et al., “Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins,” Stroke, vol. 29, no. 6, pp. 1177–1181, 1998.
[33]  F. E. de Leeuw, F. Richard, J. C. de Groot et al., “Interaction between hypertension, apoE, and cerebral white matter lesions,” Stroke, vol. 35, no. 5, pp. 1057–1060, 2004.
[34]  K. Kohara, M. Fujisawa, F. Ando et al., “MTHFR gene polymorphism as a risk factor for silent brain infarcts and white matter lesions in the Japanese general population: the NILS-LSA study,” Stroke, vol. 34, no. 5, pp. 1130–1135, 2003.
[35]  L. H. Henskens, A. A. Kroon, M. P. van Boxtel, P. A. Hofman, and P. W. De Leeuw, “Associations of the angiotensin II type 1 receptor A1166C and the endothelial NO synthase G894T gene polymorphisms with silent subcortical white matter lesions in essential hypertension,” Stroke, vol. 36, no. 9, pp. 1869–1873, 2005.
[36]  L. Paternoster, W. Chen, and C. L. Sudlow, “Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19,000 subjects,” Stroke, vol. 40, no. 6, pp. 2020–2026, 2009.
[37]  L. J. Podewils, E. Guallar, N. Beauchamp, C. G. Lyketsos, L. H. Kuller, and P. Scheltens, “Physical activity and white matter lesion progression: assessment using MRI,” Neurology, vol. 68, no. 15, pp. 1223–1226, 2007.
[38]  V. C. Mok, W. W. Lam, Y. H. Fan et al., “Effects of statins on the progression of cerebral white matter lesion : post hoc analysis of the ROCAS (Regression of Cerebral Artery Stenosis) study,” Journal of Neurology, vol. 256, no. 5, pp. 750–757, 2009.
[39]  A. A. Gouw, W. M. van der Flier, F. Fazekas et al., “Progression of white matter hyperintensities and incidence of new lacunes over a 3-year period: the leukoaraiosis and disability study,” Stroke, vol. 39, no. 5, pp. 1414–1420, 2008.
[40]  L. O. Wahlund, O. Almkvist, H. Basun, and P. Julin, “MRI in successful aging, a 5-year follow-up study from the eighth to ninth decade of life,” Magnetic Resonance Imaging, vol. 14, no. 6, pp. 601–608, 1996.
[41]  J. H. Veldink, P. Scheltens, C. Jonker, and L. J. Launer, “Progression of cerebral white matter hyperintensities on MRI is related to diastolic blood pressure,” Neurology, vol. 51, no. 1, pp. 319–320, 1998.
[42]  R. Schmidt, F. Fazekas, P. Kapeller, H. Schmidt, and H. P. Hartung, “MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study,” Neurology, vol. 53, no. 1, pp. 132–139, 1999.
[43]  G. T. Whitman, T. Tang, A. Lin, and R. W. Baloh, “A prospective study of cerebral white matter abnormalities in older people with gait dysfunction,” Neurology, vol. 57, no. 6, pp. 990–994, 2001.
[44]  R. Schmidt, C. Enzinger, S. Ropele, H. Schmidt, and F. Fazekas, “Progression of cerebral white matter lesions: 6-Year results of the Austrian Stroke Prevention Study,” The Lancet, vol. 361, no. 9374, pp. 2046–2048, 2003.
[45]  W. D. Taylor, D. C. Steffens, J. R. MacFall et al., “White matter hyperintensity progression and late-life depression outcomes,” Archives of General Psychiatry, vol. 60, no. 11, pp. 1090–1096, 2003.
[46]  J. Y. Streifler, M. Eliasziw, O. R. Benavente et al., “Development and progression of leukoaraiosis in patients with brain ischemia and carotid artery disease,” Stroke, vol. 34, no. 8, pp. 1913–1916, 2003.
[47]  P. Sachdev, W. Wen, X. Chen, and H. Brodaty, “Progression of white matter hyperintensities in elderly individuals over 3 years,” Neurology, vol. 68, no. 3, pp. 214–222, 2007.
[48]  E. J. van Dijk, N. D. Prins, H. A. Vrooman, A. Hofman, P. J. Koudstaal, and M. M. Breteler, “Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study,” Stroke, vol. 39, no. 10, pp. 2712–2719, 2008.
[49]  R. Schmidt, P. Scheltens, T. Erkinjuntti et al., “White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease,” Neurology, vol. 63, no. 1, pp. 139–144, 2004.
[50]  E. J. Burton, I. G. McKeith, D. J. Burn, M. J. Firbank, and J. T. O'Brien, “Progression of white matter hyperintensities in Alzheimer disease, dementia with lewy bodies, and Parkinson disease dementia: a comparison with normal aging,” American Journal of Geriatric Psychiatry, vol. 14, no. 10, pp. 842–849, 2006.
[51]  D. M. van den Heuvel, F. Admiraal-Behloul, V. H. ten Dam et al., “Different progression rates for deep white matter hyperintensities in elderly men and women,” Neurology, vol. 63, no. 9, pp. 1699–1701, 2004.
[52]  A. Brun and E. Englund, “A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study,” Annals of Neurology, vol. 19, no. 3, pp. 253–262, 1986.
[53]  L. Pantoni, “Pathophysiology of age-related cerebral white matter changes,” Cerebrovascular Diseases, vol. 13, supplement 2, pp. 7–10, 2002.
[54]  L. Pantoni, D. Inzitari, G. Pracucci et al., “Cerebrospinal fluid proteins in patients with leucaraiosis: possible abnormalities in blood-brain barrier function,” Journal of the Neurological Sciences, vol. 115, no. 2, pp. 125–131, 1993.
[55]  A. Wallin, M. Sjogren, A. Edman, K. Blennow, and B. Regland, “Symptoms, vascular risk factors and blood-brain barrier function in relation to CT white-matter changes in dementia,” European Neurology, vol. 44, no. 4, pp. 229–235, 2000.
[56]  R. Topakian, T. R. Barrick, F. A. Howe, and H. S. Markus, “Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 2, pp. 192–197, 2010.
[57]  J. E. Simpson, S. B. Wharton, J. Cooper et al., “Alterations of the blood-brain barrier in cerebral white matter lesions in the ageing brain,” Neuroscience Letters, vol. 486, no. 3, pp. 246–251, 2010.
[58]  F. Fazekas, R. Kleinert, H. Olfenbacher et al., “Pathologic correlates of incidental MRI white matter signal hyperintensities,” Neurology, vol. 43, no. 9, pp. 1683–1689, 1993.
[59]  J. E. Simpson, P. G. Ince, C. E. Higham et al., “Microglial activation in white matter lesions and nonlesional white matter of ageing brains,” Neuropathology and Applied Neurobiology, vol. 33, no. 6, pp. 670–683, 2007.
[60]  L. Pantoni and J. H. Garcia, “The significance of cerebral white matter abnormalities 100 years after Binswanger's report: a review,” Stroke, vol. 26, no. 7, pp. 1293–1301, 1995.
[61]  S. M. Manschot, G. J. Biessels, G. E. Rutten, R. P. Kessels, W. H. Gispen, and L. J. Kappelle, “Peripheral and central neurologic complications in type 2 diabetes mellitus: no association in individual patients,” Journal of the Neurological Sciences, vol. 264, pp. 157–162, 2008.
[62]  V. Novak, D. Last, D. C. Alsop et al., “Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes,” Diabetes Care, vol. 29, no. 7, pp. 1529–1534, 2006.
[63]  J. E. Simpson, O. Hosny, S. B. Wharton et al., “Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways,” Stroke, vol. 40, no. 2, pp. 369–375, 2009.
[64]  H. Xu, B. Stamova, G. Jickling et al., “Distinctive RNA expression profiles in blood associated with white matter hyperintensities in brain,” Stroke, vol. 41, no. 12, pp. 2744–2749, 2010.
[65]  J. H. Fu, C. Z. Lu, Z. Hong, Q. Dong, D. Ding, and K. S. Wong, “Relationship between cerebral vasomotor reactivity and white matter lesions in elderly subjects without large artery occlusive disease,” Journal of Neuroimaging, vol. 16, no. 2, pp. 120–125, 2006.
[66]  Y. Isaka, M. Okamoto, K. Ashida, and M. Imaizumi, “Decreased cerebrovascular dilatory capacity in subjects with asymptomatic periventricular hyperintensities,” Stroke, vol. 25, no. 2, pp. 375–381, 1994.
[67]  S. L. Bakker, F. E. de Leeuw, J. C. de Groot, A. Hofman, P. J. Koudstaal, and M. M. Breteler, “Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly,” Neurology, vol. 52, no. 3, pp. 578–583, 1999.
[68]  R. Ohtani, H. Tomimoto, T. Kawasaki, et al., “Cerebral vasomotor reactivity to postural change is impaired in patients with cerebrovascular white matter lesions,” Journal of Neurology, vol. 250, no. 4, pp. 412–417, 2003.
[69]  G. M. Kozera, M. Dubaniewicz, T. Zdrojewski et al., “Cerebral vasomotor reactivity and extent of white matter lesions in middle-aged men with arterial hypertension: a pilot study,” American Journal of Hypertension, vol. 23, no. 11, pp. 1198–1203, 2010.
[70]  C. P. Chung and H. H. Hu, “Pathogenesis of leukoaraiosis: role of jugular venous reflux,” Medical Hypotheses, vol. 75, no. 1, pp. 85–90, 2010.
[71]  L. Pantoni and J. H. Garcia, “Pathogenesis of leukoaraiosis: a review,” Stroke, vol. 28, no. 3, pp. 652–659, 1997.
[72]  W. R. Brown, D. M. Moody, C. R. Thore, and V. R. Challa, “Apoptosis in leukoaraiosis,” American Journal of Neuroradiology, vol. 21, no. 1, pp. 79–82, 2000.
[73]  G. Jickling, A. Salam, A. Mohammad et al., “Circulating endothelial progenitor cells and age-related white matter changes,” Stroke, vol. 40, no. 10, pp. 3191–3196, 2009.
[74]  A. Hassan, B. J. Hunt, M. O'Sullivan et al., “Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis,” Brain, vol. 126, no. 2, pp. 424–432, 2003.
[75]  J. C. de Groot, F. E. de Leeuw, M. Oudkerk et al., “Cerebral white matter lesions and cognitive function: the Rotterdam Scan study,” Annals of Neurology, vol. 47, no. 2, pp. 145–151, 2000.
[76]  D. K. Jones, D. Lythgoe, M. A. Horsfield, A. Simmons, S. C. Williams, and H. S. Markus, “Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI,” Stroke, vol. 30, no. 2, pp. 393–397, 1999.
[77]  A. Nitkunan, T. R. Barrick, R. A. Charlton, C. A. Clark, and H. S. Markus, “Multimodal MRI in cerebral small vessel disease: its relationship with cognition and sensitivity to change over time,” Stroke, vol. 39, no. 7, pp. 1999–2005, 2008.
[78]  F. Fazekas, F. Barkhof, L. O. Wahlund et al., “CT and MRI rating of white matter lesions,” Cerebrovascular Diseases, vol. 13, supplement 2, pp. 31–36, 2002.
[79]  F. Fazekas, J. B. Chawluk, A. Alavi, H. I. Hurtig, and R. A. Zimmerman, “MR signal abnormalities at 1.5?T in Alzheimer's dementia and normal aging,” American Journal of Roentgenology, vol. 149, no. 2, pp. 351–356, 1987.
[80]  P. Scheltens, F. Barkhof, D. Leys et al., “A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging,” Journal of the Neurological Sciences, vol. 114, no. 1, pp. 7–12, 1993.
[81]  L. O. Wahlund, F. Barkhof, F. Fazekas et al., “A new rating scale for age-related white matter changes applicable to MRI and CT,” Stroke, vol. 32, no. 6, pp. 1318–1322, 2001.
[82]  V. Hachinski, C. Iadecola, R. C. Petersen et al., “National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards,” Stroke, vol. 37, no. 9, pp. 2220–2241, 2006.
[83]  Y. Xiong, V. Mok, A. Wong et al., “The age-related white matter changes scale correlates with cognitive impairment,” European Journal of Neurology, vol. 17, no. 12, pp. 1451–1456, 2010.
[84]  Y. Xiong, J. Yang, A. Wong et al., “Operational definitions improve reliability of the age-related white matter changes scale,” European Journal of Neurology, vol. 18, no. 5, pp. 744–749, 2011.
[85]  N. D. Prins, E. C. van Straaten, E. J. van Dijk et al., “Measuring progression of cerebral white matter lesions on MRI: visual rating and volumetrics,” Neurology, vol. 62, no. 9, pp. 1533–1539, 2004.
[86]  A. A. Gouw, W. M. van der Flier, E. C. van Straaten et al., “Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression,” Cerebrovascular Diseases, vol. 25, no. 3, pp. 247–253, 2008.
[87]  N. D. Prins, E. J. van Dijk, T. den Heijer et al., “Cerebral small-vessel disease and decline in information processing speed, executive function and memory,” Brain, vol. 128, no. 9, pp. 2034–2041, 2005.
[88]  V. C. Mok, A. Wong, W. W. Lam et al., “Cognitive impairment and functional outcome after stroke associated with small vessel disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 4, pp. 560–566, 2004.
[89]  C. Junque, J. Pujol, P. Vendrell et al., “Leuko-araiosis on magnetic resonance imaging and speed of mental processing,” Archives of Neurology, vol. 47, no. 2, pp. 151–156, 1990.
[90]  R. Ylikoski, A. Ylikoski, T. Erkinjuntti, R. Sulkava, R. Raininko, and R. Tilvis, “White matter changes in healthy elderly persons correlate with attention and speed of mental processing,” Archives of Neurology, vol. 50, no. 8, pp. 818–824, 1993.
[91]  W. M. van der Flier, E. C. Van Straaten, F. Barkhof et al., “Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study,” Stroke, vol. 36, no. 10, pp. 2116–2120, 2005.
[92]  S. Debette and H. S. Markus, “The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis,” British Medical Journal, vol. 341, Article ID c3666, 2010.
[93]  D. M. van den Heuvel, V. H. ten Dam, A. J. de Craen et al., “Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 2, pp. 149–153, 2006.
[94]  N. D. Prins, E. J. van Dijk, T. den Heijer et al., “Cerebral white matter lesions and the risk of dementia,” Archives of Neurology, vol. 61, no. 10, pp. 1531–1534, 2004.
[95]  S. E. Vermeer, M. Hollander, E. J. van Dijk, A. Hofman, P. J. Koudstaal, and M. M. Breteler, “Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study,” Stroke, vol. 34, no. 5, pp. 1126–1129, 2003.
[96]  R. Schmidt, S. Ropele, C. Enzinger et al., “White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study,” Annals of Neurology, vol. 58, no. 4, pp. 610–616, 2005.
[97]  D. Mungas, B. R. Reed, W. J. Jagust et al., “Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease,” Neurology, vol. 59, no. 6, pp. 867–873, 2002.
[98]  D. Mungas, D. Harvey, B. R. Reed et al., “Longitudinal volumetric MRI change and rate of cognitive decline,” Neurology, vol. 65, no. 4, pp. 565–571, 2005.
[99]  D. Mungas, W. J. Jagust, B. R. Reed et al., “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology, vol. 57, no. 12, pp. 2229–2235, 2001.
[100]  A. T. Du, N. Schuff, L. L. Chao et al., “White matter lesions are associated with cortical atrophy more than entorhinal and hippocampal atrophy,” Neurobiology of Aging, vol. 26, no. 4, pp. 553–559, 2005.
[101]  C. DeCarli, D. G. Murphy, M. Tranh et al., “The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults,” Neurology, vol. 45, no. 11, pp. 2077–2084, 1995.
[102]  M. Tullberg, E. Fletcher, C. DeCarli et al., “White matter lesions impair frontal lobe function regardless of their location,” Neurology, vol. 63, no. 2, pp. 246–253, 2004.
[103]  C. Eckerstrom, E. Olsson, N. Klasson et al., “High white matter lesion load is associated with hippocampal atrophy in mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 31, no. 2, pp. 132–138, 2011.
[104]  E. E. Smith, S. Egorova, D. Blacker et al., “Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia,” Archives of Neurology, vol. 65, no. 1, pp. 94–100, 2008.
[105]  M. W. Vernooij, M. A. Ikram, H. A. Vrooman et al., “White matter microstructural integrity and cognitive function in a general elderly population,” Archives of General Psychiatry, vol. 66, no. 5, pp. 545–553, 2009.
[106]  A. G. van Norden, K. F. de Laat, E. J. van Dijk et al., “Diffusion tensor imaging and cognition in cerebral small vessel disease. The RUN DMC study,” Biochimica et Biophysica Acta. In press.
[107]  K. B. Boone, B. L. Miller, I. M. Lesser et al., “Neuropsychological correlates of white-matter lesions in healthy elderly subjects: a threshold effect,” Archives of Neurology, vol. 49, no. 5, pp. 549–554, 1992.
[108]  V. Mok, W. Lam, Y. Chan, and K. Wong, Poststroke Dementia and Imaging, Nova Science Publishers, 2008.
[109]  S. E. Vermeer, W. T. Longstreth Jr., and P. J. Koudstaal, “Silent brain infarcts: a systematic review,” The Lancet Neurology, vol. 6, no. 7, pp. 611–619, 2007.
[110]  J. A. Pettersen, G. Sathiyamoorthy, F. Q. Gao et al., “Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the sunnybrook dementia study,” Archives of Neurology, vol. 65, no. 6, pp. 790–795, 2008.
[111]  S. E. Vermeer, N. D. Prins, T. den Heijer, A. Hofman, P. J. Koudstaal, and M. M. Breteler, “Silent brain infarcts and the risk of dementia and cognitive decline,” New England Journal of Medicine, vol. 348, no. 13, pp. 1215–1222, 2003.
[112]  Y. Yakushiji, M. Nishiyama, S. Yakushiji et al., “Brain microbleeds and global cognitive function in adults without neurological disorder,” Stroke, vol. 39, no. 12, pp. 3323–3328, 2008.
[113]  J. A. Schneider, “Brain microbleeds and cognitive function,” Stroke, vol. 38, no. 6, pp. 1730–1731, 2007.
[114]  R. Camicioli, M. M. Moore, G. Sexton, D. B. Howieson, and J. A. Kaye, “Age-related brain changes associated with motor function in healthy older people,” Journal of the American Geriatrics Society, vol. 47, no. 3, pp. 330–334, 1999.
[115]  C. R. Guttmann, R. Benson, S. K. Warfield et al., “White matter abnormalities in mobility-impaired older persons,” Neurology, vol. 54, no. 6, pp. 1277–1283, 2000.
[116]  C. Rosano, J. Brach, W. T. Longstreth Jr., and A. B. Newman, “Quantitative measures of gait characteristics indicate prevalence of underlying subclinical structural brain abnormalities in high-functioning older adults,” Neuroepidemiology, vol. 26, no. 1, pp. 52–60, 2006.
[117]  B. E. Maki, “Gait changes in older adults: predictors of falls or indicators of fear,” Journal of the American Geriatrics Society, vol. 45, no. 3, pp. 313–320, 1997.
[118]  C. Rosano, J. Brach, S. Studenski, W. T. Longstreth Jr., and A. B. Newman, “Gait variability is associated with subclinical brain vascular abnormalities in high-functioning older adults,” Neuroepidemiology, vol. 29, no. 3-4, pp. 193–200, 2008.
[119]  H. Baezner, C. Blahak, A. Poggesi et al., “Association of gait and balance disorders with age-related white matter changes: the LADIS Study,” Neurology, vol. 70, no. 12, pp. 935–942, 2008.
[120]  D. P. Briley, M. Wasay, S. Sergent, and S. Thomas, “Cerebral white matter changes (leukoaraiosis), stroke, and gait disturbance,” Journal of the American Geriatrics Society, vol. 45, no. 12, pp. 1434–1438, 1997.
[121]  H. C. Chui, C. Zarow, W. J. Mack et al., “Cognitive impact of subcortical vascular and Alzheimer's disease pathology,” Annals of Neurology, vol. 60, no. 6, pp. 677–687, 2006.
[122]  V. Srikanth, R. Beare, L. Blizzard et al., “Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study,” Stroke, vol. 40, no. 1, pp. 175–180, 2009.
[123]  V. Srikanth, T. G. Phan, J. Chen, R. Beare, J. M. Stapleton, and D. C. Reutens, “The location of white matter lesions and gait—A voxel-based study,” Annals of Neurology, vol. 67, no. 2, pp. 265–269, 2010.
[124]  R. A. Bhadelia, L. L. Price, K. L. Tedesco et al., “Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly,” Stroke, vol. 40, no. 12, pp. 3816–3820, 2009.
[125]  K. F. de Laat, A. M. Tuladhar, A. G. van Norden, D. G. Norris, M. P. Zwiers, and F. E. de Leeuw, “Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease,” Brain, vol. 134, no. 1, pp. 73–83, 2011.
[126]  K. F. de Laat, A. G. van Norden, R. A. Gons et al., “Diffusion tensor imaging and gait in elderly persons with cerebral small vessel disease,” Stroke, vol. 42, pp. 373–379, 2011.
[127]  K. Iseki, T. Hanakawa, K. Hashikawa et al., “Gait disturbance associated with white matter changes: a gait analysis and blood flow study,” NeuroImage, vol. 49, no. 2, pp. 1659–1666, 2010.
[128]  K. A. Jellinger, “The pathology of Parkinson's disease,” Advances in Neurology, vol. 86, pp. 55–72, 2001.
[129]  N. I. Bohnen and R. L. Albin, “White matter lesions in Parkinson disease,” Nature Reviews Neurology, vol. 7, no. 4, pp. 229–236, 2011.
[130]  L. C. Silbert and J. Kaye, “Neuroimaging and cognition in Parkinson's disease dementia,” Brain Pathology, vol. 20, no. 3, pp. 646–653, 2010.
[131]  H. K. Kuo and L. A. Lipsitz, “Cerebral white matter changes and geriatric syndromes: is there a link?” Journals of Gerontology, vol. 59, no. 8, pp. 818–826, 2004.
[132]  G. A. Kuchel, N. Moscufo, C. R. Guttmann et al., “Localization of brain white matter hyperintensities and urinary incontinence in community-dwelling older adults,” Journals of Gerontology, vol. 64, no. 8, pp. 902–909, 2009.
[133]  K. Sonohara, K. Kozaki, M. Akishita et al., “White matter lesions as a feature of cognitive impairment, low vitality and other symptoms of geriatric syndrome in the elderly,” Geriatrics and Gerontology International, vol. 8, no. 2, pp. 93–100, 2008.
[134]  A. Poggesi, G. Pracucci, H. Chabriat et al., “Urinary complaints in nondisabled elderly people with age-related white matter changes: the Leukoaraiosis And DISability (LADIS) Study,” Journal of the American Geriatrics Society, vol. 56, no. 9, pp. 1638–1643, 2008.
[135]  Y. Y. Sitoh, Y. Y. Sitoh, and S. Sahadevan, “Clinical significance of cerebral white matter lesions in older Asians with suspected dementia,” Age and Ageing, vol. 33, no. 1, pp. 67–71, 2004.
[136]  S. D. Tadic, D. Griffiths, A. Murrin, W. Schaefer, H. J. Aizenstein, and N. M. Resnick, “Brain activity during bladder filling is related to white matter structural changes in older women with urinary incontinence,” NeuroImage, vol. 51, no. 4, pp. 1294–1302, 2010.
[137]  I. M. Lesser, E. Hill-Gutierrez, B. L. Miller, and K. B. Boone, “Late-onset depression with white matter lesions,” Psychosomatics, vol. 34, no. 4, pp. 364–367, 1993.
[138]  R. D. Nebes, C. F. Reynolds Jr., F. Boada et al., “Longitudinal increase in the volume of white matter hyperintensities in late-onset depression,” International Journal of Geriatric Psychiatry, vol. 17, no. 6, pp. 526–530, 2002.
[139]  D. C. Steffens, H. B. Bosworth, J. M. Provenzale, and J. R. MacFall, “Subcortical white matter lesions and functional impairment in geriatric depression,” Depression and Anxiety, vol. 15, no. 1, pp. 23–28, 2002.
[140]  A. Teodorczuk, J. T. O'Brien, M. J. Firbank et al., “White matter changes and late-life depressive symptoms: longitudinal study,” British Journal of Psychiatry, vol. 191, no. 3, pp. 212–217, 2007.
[141]  O. Godin, C. Dufouil, P. Maillard et al., “White matter lesions as a predictor of depression in the elderly: the 3C-dijon study,” Biological Psychiatry, vol. 63, no. 7, pp. 663–669, 2008.
[142]  L. L. Herrmann, M. Le Masurier, and K. P. Ebmeier, “White matter hyperintensities in late life depression: a systematic review,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 6, pp. 619–624, 2008.
[143]  J. J. Vattakatuchery and J. Joy, “Hyperintensities on MRI: white matter and depression,” British Medical Journal, vol. 341, Article ID c4611, 2010.
[144]  P. J. Olesen, D. R. Gustafson, M. Simoni et al., “Temporal lobe atrophy and white matter lesions are related to major depression over 5 years in the elderly,” Neuropsychopharmacology, vol. 35, no. 13, pp. 2638–2645, 2010.
[145]  W. K. Tang, Y. K. Chen, J. Y. Lu et al., “White matter hyperintensities in post-stroke depression: a case control study,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 81, no. 12, pp. 1312–1315, 2010.
[146]  J. H. Fu, K. Wong, V. Mok et al., “Neuroimaging predictors for depressive symptoms in cerebral small vessel disease,” International Journal of Geriatric Psychiatry, vol. 25, no. 10, pp. 1039–1043, 2010.
[147]  K. R. Cullen, B. Klimes-Dougan, R. Muetzel et al., “Altered white matter microstructure in adolescents with major depression: a preliminary study,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 49, no. 2, pp. 173–183, 2010.
[148]  J. F. Buyck, C. Dufouil, B. Mazoyer et al., “Cerebral white matter lesions are associated with the risk of stroke but not with other vascular events: the 3-city dijon study,” Stroke, vol. 40, no. 7, pp. 2327–2331, 2009.
[149]  H. Bokura, S. Kobayashi, S. Yamaguchi et al., “Silent brain infarction and subcortical white matter lesions increase the risk of stroke and mortality: a prospective cohort study,” Journal of Stroke and Cerebrovascular Diseases, vol. 15, no. 2, pp. 57–63, 2006.
[150]  N. K. Oksala, A. Oksala, T. Pohjasvaara et al., “Age related white matter changes predict stroke death in long term follow-up,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 7, pp. 762–766, 2009.
[151]  D. Inzitari, M. Cadelo, M. L. Marranci, G. Pracucci, and L. Pantoni, “Vascular deaths in elderly neurological patients with leukoaraiosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 62, no. 2, pp. 177–181, 1997.
[152]  V. Palumbo, J. M. Boulanger, M. D. Hill, D. Inzitari, and A. M. Buchan, “Leukoaraiosis and intracerebral hemorrhage after thrombolysis in acute stroke,” Neurology, vol. 68, no. 13, pp. 1020–1024, 2007.
[153]  T. Neumann-Haefelin, S. Hoelig, J. Berkefeld et al., “Leukoaraiosis is a risk factor for symptomatic intracerebral hemorrhage after thrombolysis for acute stroke,” Stroke, vol. 37, no. 10, pp. 2463–2466, 2006.
[154]  R. H. Swartz and R. Z. Kern, “Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis,” Archives of Neurology, vol. 61, no. 9, pp. 1366–1368, 2004.
[155]  M. C. Kruit, M. A. van Buchem, L. J. Launer, G. M. Terwindt, and M. D. Ferrari, “Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study,” Cephalalgia, vol. 30, no. 2, pp. 129–136, 2010.
[156]  N. Colledge, S. Lewis, G. Mead, R. Sellar, J. Wardlaw, and J. Wilson, “Magnetic resonance brain imaging in people with dizziness: a comparison with non-dizzy people,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 5, pp. 587–589, 2002.
[157]  G. J. Hankey and J. W. Eikelboom, “Homocysteine and vascular disease,” The Lancet, vol. 354, no. 9176, pp. 407–413, 1999.
[158]  G. N. Welch and J. Loscalzo, “Homocysteine and atherothrombosis,” New England Journal of Medicine, vol. 338, no. 15, pp. 1042–1050, 1998.
[159]  F. Perini, E. Galloni, I. Bolgan et al., “Elevated plasma homocysteine in acute stroke was not associated with severity and outcome: stronger association with small artery disease,” Neurological Sciences, vol. 26, no. 5, pp. 310–318, 2005.
[160]  S. E. Vermeer, E. J. van Dijk, P. J. Koudstaal et al., “Homocysteine, silent brain infarcts, and white matter lesions: the Rotterdam scan study,” Annals of Neurology, vol. 51, no. 3, pp. 285–289, 2002.
[161]  C. Dufouil, A. Alperovitch, V. Ducros, and C. Tzourio, “Homocysteine, white matter hyperintensities, and cognition in healthy elderly people,” Annals of Neurology, vol. 53, no. 2, pp. 214–221, 2003.
[162]  W. T. Longstreth Jr., R. Katz, J. Olson et al., “Plasma total homocysteine levels and cranial magnetic resonance imaging findings in elderly persons: the cardiovascular health study,” Archives of Neurology, vol. 61, no. 1, pp. 67–72, 2004.
[163]  A. Hassan, B. J. Hunt, M. O'Sullivan et al., “Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction,” Brain, vol. 127, no. 1, pp. 212–219, 2004.
[164]  P. Sachdev, R. Parslow, C. Salonikas et al., “Homocysteine and the brain in midadult life: evidence for an increased risk of leukoaraiosis in men,” Archives of Neurology, vol. 61, no. 9, pp. 1369–1376, 2004.
[165]  T. M. Scott, K. L. Tucker, A. Bhadelia et al., “Homocysteine and B vitamins relate to brain volume and white-matter changes in geriatric patients with psychiatric disorders,” American Journal of Geriatric Psychiatry, vol. 12, no. 6, pp. 631–638, 2004.
[166]  C. B. Wright, M. C. Paik, T. R. Brown et al., “Total homocysteine is associated with white matter hyperintensity volume: the Northern Manhattan study,” Stroke, vol. 36, no. 6, pp. 1207–1211, 2005.
[167]  A. Wong, V. Mok, Y. H. Fan, W. W. Lam, K. S. Liang, and K. S. Wong, “Hyperhomocysteinemia is associated with volumetric white matter change in patients with small vessel disease,” Journal of Neurology, vol. 253, no. 4, pp. 441–447, 2006.
[168]  B. Censori, T. Partziguian, O. Manara, and M. Poloni, “Plasma homocysteine and severe white matter disease,” Neurological Sciences, vol. 28, no. 5, pp. 259–263, 2007.
[169]  J. L. Fuh, “Homocysteine, cognition and brain white matter hyperintensities,” Acta Neurologica Taiwanica, vol. 19, no. 3, pp. 150–152, 2010.
[170]  S. Seshadri, P. A. Wolf, A. S. Beiser et al., “Association of plasma total homocysteine levels with subclinical brain injury: cerebral volumes, white matter hyperintensity, and silent brain infarcts at volumetric magnetic resonance imaging in the Framingham Offspring Study,” Archives of Neurology, vol. 65, no. 5, pp. 642–649, 2008.
[171]  F. Anan, T. Masaki, H. Tatsukawa et al., “The role of homocysteine as a significant risk factor for white matter lesions in Japanese women with rheumatoid arthritis,” Metabolism, vol. 58, no. 1, pp. 69–73, 2009.
[172]  Y. L. Tseng, Y. Y. Chang, J. S. Liu, C. S. Su, S. L. Lai, and M. Y. Lan, “Association of plasma homocysteine concentration with cerebral white matter hyperintensity on magnetic resonance images in stroke patients,” Journal of the Neurological Sciences, vol. 284, no. 1-2, pp. 36–39, 2009.
[173]  H. S. Markus, B. Hunt, K. Palmer, C. Enzinger, H. Schmidt, and R. Schmidt, “Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study,” Stroke, vol. 36, no. 7, pp. 1410–1414, 2005.
[174]  J. H. Han, K. S. Wong, Y. Y. Wang, J. H. Fu, D. Ding, and Z. Hong, “Plasma level of sICAM-1 is associated with the extent of white matter lesion among asymptomatic elderly subjects,” Clinical Neurology and Neurosurgery, vol. 111, no. 10, pp. 847–851, 2009.
[175]  R. Schmidt, H. Schmidt, M. Pichler et al., “C-reactive protein, carotid atherosclerosis, and cerebral small-vessel disease: results of the austrian stroke prevention study,” Stroke, vol. 37, no. 12, pp. 2910–2916, 2006.
[176]  E. J. van Dijk, N. D. Prins, S. E. Vermeer et al., “C-reactive protein and cerebral small-vessel disease: the Rotterdam scan study,” Circulation, vol. 112, no. 6, pp. 900–905, 2005.
[177]  M. Fornage, Y. A. Chiang, E. S. Omeara et al., “Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the cardiovascular health study,” Stroke, vol. 39, no. 7, pp. 1952–1959, 2008.
[178]  C. Dufouil, J. Chalmers, O. Coskun et al., “Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy,” Circulation, vol. 112, no. 11, pp. 1644–1650, 2005.
[179]  L. Pantoni, M. Carosi, S. Amigoni, M. Mascalchi, and D. Inzitari, “A preliminary open trial with nimodipine in patients with cognitive impairment and leukoaraiosis,” Clinical Neuropharmacology, vol. 19, no. 6, pp. 497–506, 1996.
[180]  L. Pantoni, R. Rossi, D. Inzitari et al., “Efficacy and safety of nimodipine in subcortical vascular dementia: a subgroup analysis of the Scandinavian Multi-Infarct Dementia Trial,” Journal of the Neurological Sciences, vol. 175, no. 2, pp. 124–134, 2000.
[181]  L. Pantoni, T. del Ser, A. G. Soglian et al., “Efficacy and safety of nimodipine in subcortical vascular dementia: a randomized placebo-controlled trial,” Stroke, vol. 36, no. 3, pp. 619–624, 2005.
[182]  F. Amenta, A. Lanari, F. Mignini, G. Silvestrelli, E. Traini, and D. Tomassoni, “Nicardipine use in cerebrovascular disease: a review of controlled clinical studies,” Journal of the Neurological Sciences, vol. 283, no. 1-2, pp. 219–223, 2009.
[183]  K. Kario, T. Matsuo, H. Kobayashi, M. Imiya, M. Matsuo, and K. Shimada, “Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients: advanced silent cerebrovascular damage in extreme dippers,” Hypertension, vol. 27, no. 1, pp. 130–135, 1996.
[184]  T. R. Pedersen, “Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S),” The Lancet, vol. 344, no. 8934, pp. 1383–1389, 1994.
[185]  C. Bernick, R. Katz, N. L. Smith et al., “Statins and cognitive function in the elderly: the Cardiovascular Health Study,” Neurology, vol. 65, no. 9, pp. 1388–1394, 2005.
[186]  D. Woo, B. M. Kissela, J. C. Khoury et al., “Hypercholesterolemia, HMG-CoA reductase inhibitors, and risk of intracerebral hemorrhage: a case-control study,” Stroke, vol. 35, no. 6, pp. 1360–1364, 2004.
[187]  J. Roquer, A. Rodriguez Campello, M. Gomis, A. Ois, E. Munteis, and P. Bohm, “Serum lipid levels and in-hospital mortality in patients with intracerebral hemorrhage,” Neurology, vol. 65, no. 8, pp. 1198–1202, 2005.
[188]  H. Kavirajan and L. S. Schneider, “Efficacy and adverse effects of cholinesterase inhibitors and memantine in vascular dementia: a meta-analysis of randomised controlled trials,” The Lancet Neurology, vol. 6, no. 9, pp. 782–792, 2007.
[189]  H. J. Mobius and A. Stoffler, “New approaches to clinical trials in vascular dementia: memantine in small vessel disease,” Cerebrovascular Diseases, vol. 13, supplement 2, pp. 61–66, 2002.
[190]  M. Dichgans, H. S. Markus, S. Salloway et al., “Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL,” The Lancet Neurology, vol. 7, no. 4, pp. 310–318, 2008.
[191]  G. C. Roman, S. Salloway, S. E. Black et al., “Randomized, placebo-controlled, clinical trial of donepezil in vascular dementia: differential effects by hippocampal size,” Stroke, vol. 41, no. 6, pp. 1213–1221, 2010.
[192]  The VITATOPS Trial Study Group, “B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial,” The Lancet Neurology, vol. 9, no. 9, pp. 855–865, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133