全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Season of Birth and Exceptional Longevity: Comparative Study of American Centenarians, Their Siblings, and Spouses

DOI: 10.4061/2011/104616

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study explores the effects of month of birth (a proxy for early-life environmental influences) on the chances of survival to age 100. Months of birth for 1,574 validated centenarians born in the United States in 1880–1895 were compared to the same information obtained for centenarians' 10,885 shorter-lived siblings and 1,083 spouses. Comparison was conducted using a within-family analysis by the method of conditional logistic regression, which allows researchers to control for unobserved shared childhood or adulthood environment and common genetic background. It was found that months of birth have significant long-lasting effect on survival to age 100: siblings born in September–November have higher odds to become centenarians compared to siblings born in March. A similar month-of-birth pattern was found for centenarian spouses. These results support the idea of early-life programming of human aging and longevity. 1. Introduction Studies of centenarians (persons living to age 100 and over) are useful in identifying factors leading to long life and avoidance of fatal diseases. These studies may be a sensitive way to find genetic, familial, environmental, and life-course factors associated with lower mortality and better survival [1, 2]. Several theoretical concepts suggest that early-life events and conditions may have a significant long-lasting effect on survival to advanced ages. These concepts include (but are not limited to) the idea of fetal origin of adult diseases also known as the Barker hypothesis [3, 4] and the related idea of early-life programming of aging and longevity; the theory of technophysio evolution [5], the reliability theory of aging, and the high initial damage load (HIDL) hypothesis in particular [6, 7]. These ideas are supported by the studies suggesting significant effects of early-life conditions on late-life mortality [3, 8–10]. Finch and Crimmins [11] suggested that historical decline in chronic inflammation (due to decreasing exposure to early-life infections) has led to a decrease in morbidity and mortality from chronic conditions at old age. They showed that both childhood mortality and cardiovascular diseases of old age may share common infectious and inflammatory causes rooted in the external environment [12]. Month of birth often is used by epidemiologists as a proxy characteristic for environmental effects acting during in-utero and early infancy development. These early effects include temperature and sun exposure during in-utero and early postnatal period, nutritional status during early development, exposure to

References

[1]  N. Barzilai and A. R. Shuldiner, “Searching for human longevity genes: the future history of gerontology in the post-genomic era,” Journals of Gerontology A, vol. 56, no. 2, pp. M83–M87, 2001.
[2]  D. C. Willcox, B. J. Willcox, H. Todoriki, J. D. Curb, and M. Suzuki, “Caloric restriction and human longevity: what can we learn from the Okinawans?” Biogerontology, vol. 7, no. 3, pp. 173–177, 2006.
[3]  D. J. P. Barker, Mothers, Babies, and Disease in Later Life, Churchill Levingstone, London, UK, 1998.
[4]  D. Kuh and B. Ben-Shlomo, A Life Course Approach to Chronic Disease Epidemiology, Oxford University Press, Oxford, UK, 1997.
[5]  R. W. Fogel, “Technophysio evolution and the measurement of economic growth,” Journal of Evolutionary Economics, vol. 14, no. 2, pp. 217–221, 2004.
[6]  L. A. Gavrilov and N. S. Gavrilova, The Biology of Life Span: A Quantitative Approach, Harwood Academic Publisher, New York, NY, USA, 1991.
[7]  L. A. Gavrilov and N. S. Gavrilova, “Early-life programming of aging and longevity: the idea of high initial damage load (the HIDL hypothesis),” Annals of the New York Academy of Sciences, vol. 1019, pp. 496–501, 2004.
[8]  L. A. Gavrilov and N. S. Gavrilova, “Early-life factors modulating lifespan,” in Modulating Aging and Longevity, S. I. S. Rattan, Ed., pp. 27–50, Kluwer Academic, Dodrecht, The Netherlands, 2003.
[9]  M. D. Hayward and B. K. Gorman, “The long arm of childhood: the influence of early-life social conditions of men's mortality,” Demography, vol. 41, no. 1, pp. 87–107, 2004.
[10]  K. R. Smith, G. P. Mineau, G. Garibotti, and R. Kerber, “Effects of childhood and middle-adulthood family conditions on later-life mortality: evidence from the Utah Population Database, 1850–2002,” Social Science and Medicine, vol. 68, no. 9, pp. 1649–1658, 2009.
[11]  C. E. Finch and E. M. Crimmins, “Inflammatory exposure and historical changes in human life-spans,” Science, vol. 305, no. 5691, pp. 1736–1739, 2004.
[12]  E. M. Crimmins and C. E. Finch, “Infection, inflammation, height, and longevity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 2, pp. 498–503, 2006.
[13]  D. A. Lawlor, H. Clark, G. Ronalds, and D. A. Leon, “Season of birth and childhood intelligence: findings from the Aberdeen Children of the 1950s cohort study,” British Journal of Educational Psychology, vol. 76, no. 3, pp. 481–499, 2006.
[14]  G. D. Smith, S. Leary, A. Ness, and D. A. Lawlor, “Challenges and novel approaches in the epidemiological study of early life influences on later disease,” in Early Nutrition Programming and Health Outcomes in Later Life: Obesity and Beyond, B. Kolatzko, T. Decsi, D. Molnar, and A. DeLaHunty, Eds., pp. 1–14, Springer, Dordrecht, The Netherlands, 2009.
[15]  G. Doblhammer and J. W. Vaupel, “Lifespan depends on month of birth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2934–2939, 2001.
[16]  L. A. Gavrilov and N. S. Gavrilova, “Season of birth and human longevity,” Journal of Anti-Aging Medicine, vol. 2, no. 4, pp. 365–366, 1999.
[17]  A. M. Vaiserman and V. P. Voitenko, “Early programming of adult longevity: demographic and experimental studies,” Journal of Anti-Aging Medicine, vol. 6, no. 1, pp. 11–20, 2003.
[18]  E. Hungtington, Season of Birth, John Wiley & Sons, New York, NY, USA, 1938.
[19]  G. Doblhammer, The Late Life Legacy of Very Early Life. Demographic Research Monographs, Springer, Heidelberg, Germany, 2004.
[20]  A. D. Flouris, Y. Spiropoulos, G. J. Sakellariou, and Y. Koutedakis, “Effect of seasonal programming on fetal development and longevity: links with environmental temperature,” American Journal of Human Biology, vol. 21, no. 2, pp. 214–216, 2009.
[21]  A. Lerchl, “Month of birth and life expectancy: role of gender and age in a comparative approach,” Naturwissenschaften, vol. 91, no. 9, pp. 422–425, 2004.
[22]  A. M. Vaiserman, A. C. Collinson, N. M. Koshel, I. I. Belaja, and V. P. Voitenko, “Seasonal programming of adult longevity in Ukraine,” International Journal of Biometeorology, vol. 47, no. 1, pp. 49–52, 2002.
[23]  G. Doblhammer, R. Scholz, and H. Maier, “Month of birth and survival to age 105+: evidence from the age validation study of German semi-supercentenarians,” Experimental Gerontology, vol. 40, no. 10, pp. 829–835, 2005.
[24]  M. Kihlbom and S. E. Johansson, “Month of birth, socioeconomic background and development in Swedish men,” Journal of Biosocial Science, vol. 36, no. 5, pp. 561–571, 2004.
[25]  M. Bobak and A. Gjonca, “The seasonality of live birth is strongly influenced by socio-demographic factors,” Human Reproduction, vol. 16, no. 7, pp. 1512–1517, 2001.
[26]  F. L. Goodenough, “Month of birth as related to socio economic status of parents,” Pedagogical Seminary and Journal of Genetic Psychology, vol. 59, pp. 65–76, 1941.
[27]  D. T. A. Eisenberg, B. Campbell, J. MacKillop, J. K. Lum, and D. S. Wilson, “Season of birth and dopamine receptor gene associations with impulsivity, sensation seeking and reproductive behaviors,” PLoS ONE, vol. 2, no. 11, Article ID e1216, 2007.
[28]  L. A. Gavrilov and N. S. Gavrilova, “Epidemiology of human longevity: the search for appropriate methodology,” Journal of Anti-Aging Medicine, vol. 4, no. 1, pp. 13–30, 2001.
[29]  N. S. Gavrilova, L. A. Gavrilov, G. N. Evdokushkina et al., “Evolution, mutations, and human longevity: European royal and noble families,” Human Biology, vol. 70, no. 4, pp. 799–804, 1998.
[30]  R. A. Kerber, E. O'Brien, K. R. Smith, and R. M. Cawthon, “Familial excess longevity in Utah genealogies,” Journals of Gerontology A, vol. 56, no. 3, pp. B130–B139, 2001.
[31]  R. Pearl and R. D. W. Pearl, The Ancestry of the Long-Lived, John Hopkins University Press, Baltimore, Md, USA, 1934.
[32]  B. J. Willcox, D. C. Willcox, Q. He, J. D. Curb, and M. Suzuki, “Siblings of Okinawan centenarians share lifelong mortality advantages,” Journals of Gerontology A, vol. 61, no. 4, pp. 345–354, 2006.
[33]  J. W. Adams and A. B. Kasakoff, “Estimates of census underenumeration based on genealogies,” Social Science History, vol. 15, pp. 527–543, 1991.
[34]  L. A. Gavrilov, N. S. Gavrilova, S. J. Olshansky, and B. A. Carnes, “Genealogical data and the biodemography of human longevity,” Social Biology, vol. 49, no. 3-4, pp. 160–173, 2002.
[35]  K. R. Smith, G. P. Mineau, and L. L. Bean, “Fertility and post-reproductive longevity,” Social Biology, vol. 49, no. 3-4, pp. 185–205, 2002.
[36]  D. Sklar and A. Trachtenberg, PHP Cookbook, O'Reilly, 2002.
[37]  C. A. Krach and V. A. Velkoff, Centenarians in the United States, Government Printing Office, Washington, DC, USA, 1999.
[38]  I. T. Elo, S. H. Preston, I. Rosenwaike, M. Hill, and T. P. Cheney, “Consistency of age reporting on death certificates and social security records among elderly African Americans,” Social Science Research, vol. 25, no. 3, pp. 292–307, 1996.
[39]  B. Jeune and J. Vaupel, Validation of Exceptional Longevity, Odense University Publisher, Odense Denmark, 1999.
[40]  S. H. Preston, I. T. Elo, I. Rosenwaike, and M. Hill, “African-American mortality at older ages: results of a matching study,” Demography, vol. 33, no. 2, pp. 193–209, 1996.
[41]  N. S. Gavrilova and L. A. Gavrilov, “Search for predictors of exceptional human longevity: using computerized genealogies and internet resources for human longevity studies,” North American Actuarial Journal, vol. 11, no. 1, pp. 49–67, 2007.
[42]  H. D. Sesso, R. S. Paffenbarger, and I. M. Lee, “Comparison of National Death Index and World Wide Web death searches,” American Journal of Epidemiology, vol. 152, no. 2, pp. 107–111, 2000.
[43]  K. Faig, Reported Deaths of Centenarians and Near-Centenarians in the U.S. Social Security Administration's Death Master File, Orlando, Fla, USA, 2001, Paper presented at the Society of Actuaries “Living to 100” International Symposium.
[44]  S. Ruggles, J. T. Alexander, K. Genadek, et al., Integrated Public Use Microdata Series (IPUMS): Version 5.0 [Machine-readable database], University of Minnesota, Minneapolis, Minn, USA, 2010.
[45]  S. H. Preston, M. E. Hill, and G. L. Drevenstedt, “Childhood conditions that predict survival to advanced ages among African-Americans,” Social Science and Medicine, vol. 47, no. 9, pp. 1231–1246, 1998.
[46]  D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, John Wiley & Sons, New York, NY, USA, 2001.
[47]  N. E. Breslow and N. E. Day, Statistical Methods in Cancer Research, vol. 1 of The Analysis of Case-Control Studies, Oxford University Press, Oxford, UK, 1993.
[48]  StataCorp, Stata Statistical Software: Release 11, StataCorp LP, College Station, Tex, USA, 2009.
[49]  T. V. Perneger, “What's wrong with Bonferroni adjustments,” British Medical Journal, vol. 316, no. 7139, pp. 1236–1238, 1998.
[50]  K. J. Rothman, “No adjustments are needed for multiple comparisons,” Epidemiology, vol. 1, no. 1, pp. 43–46, 1990.
[51]  Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate—a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, pp. 289–300, 1995.
[52]  F. E. Linder and R. D. Grove, Vital Statistics Rates in the United States 1900–1940, Goverment Printing Office, Washington, USA, 1943.
[53]  E. L. Abel and M. L. Kruger, “Birth month affects longevity,” Death Studies, vol. 34, no. 8, pp. 757–763, 2010.
[54]  L. A. Gavrilov and N. S. Gavrilova, “Mortality measurement at advanced ages: a study of the Social Security Administration Death Master File,” in Living to 100 and Beyond: Survival at Advanced Ages [online monograph], The Society of Actuaries, Shaumburg, Ill, USA, 2008.
[55]  M. Woodward, Epidemiology. Study Design and Data Analysis, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2005.
[56]  P. E. Watson and B. W. McDonald, “Seasonal variation of nutrient intake in pregnancy: effects on infant measures and possible influence on diseases related to season of birth,” European Journal of Clinical Nutrition, vol. 61, no. 11, pp. 1271–1280, 2007.
[57]  B. N. Ames, “Micronutrients prevent cancer and delay aging,” Toxicology Letters, vol. 102-103, pp. 5–18, 1998.
[58]  L. R. Ferguson, “Dietary influences on mutagenesis-Where is this field going?” Environmental and Molecular Mutagenesis, vol. 51, no. 8-9, pp. 909–918, 2010.
[59]  G. Chodick, S. Flash, Y. Deoitch, and V. Shalev, “Seasonality in birth weight: review of global patterns and potential causes,” Human Biology, vol. 81, no. 4, pp. 463–477, 2009.
[60]  S. M. Kevan, “Season of life—season of death,” Social Science and Medicine, vol. 13, no. 4, pp. 227–232, 1979.
[61]  J. P. Fox, C. E. Hall, and L. Elveback, Epidemiology. Man and Disease, The Macmillan Company, London, UK, 1970.
[62]  K. L. Moore, The Developing Human. Clinically Oriented Embriology, WB Saunders, Philadelphia, Pa, USA, 4th edition, 1988.
[63]  A. Ornoy and A. Tenenbaum, “Pregnancy outcome following infections by coxsackie, echo, measles, mumps, hepatitis, polio and encephalitis viruses,” Reproductive Toxicology, vol. 21, no. 4, pp. 446–457, 2006.
[64]  J. Suvisaari, J. Haukka, A. Tanskanen, T. Hovi, and J. L?nnqvist, “Association between prenatal exposure to poliovirus infection and adult schizophrenia,” American Journal of Psychiatry, vol. 156, no. 7, pp. 1100–1102, 1999.
[65]  D. A. Lawlor, G. D. Smith, R. Mitchell, and S. Ebrahim, “Adult blood pressure and climate conditions in infancy: a test of the hypothesis that dehydration in infancy is associated with higher adult blood pressure,” American Journal of Epidemiology, vol. 163, no. 7, pp. 608–614, 2006.
[66]  R. Basu, B. Malig, and B. Ostro, “High ambient temperature and the risk of preterm delivery,” American Journal of Epidemiology, vol. 172, no. 10, pp. 1108–1117, 2010.
[67]  G. M. Centola and S. Eberly, “Seasonal variations and age-related changes in human sperm count, motility, motion parameters, morphology, and white blood cell concentration,” Fertility and Sterility, vol. 72, no. 5, pp. 803–808, 1999.
[68]  Z. Chen, T. Toth, L. Godfrey-Bailey, N. Mercedat, I. Schiff, and R. Hauser, “Seasonal variation and age-related changes in human semen parameters,” Journal of andrology, vol. 24, no. 2, pp. 226–231, 2003.
[69]  R. Künzle, M. D. Mueller, A. W. Huber, H. Drescher, and N. A. Bersinger, “Seasonality in human semen quality of smokers and non-smokers: effect of temperature,” Asian Journal of Andrology, vol. 6, no. 3, pp. 243–247, 2004.
[70]  D. A. Lawlor, G. Davey Smith, R. Mitchell, and S. Ebrahim, “Temperature at birth, coronary heart disease, and insulin resistance: cross sectional analyses of the British women's heart and health study,” Heart, vol. 90, no. 4, pp. 381–388, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133