This study describes mitochondrial behaviour during the C2C12 myoblast differentiation program and proposes a proteomic approach to mitochondria integrated with classical morphofunctional and biochemical analyses. Mitochondrial ultrastructure variations were determined by transmission electron microscopy; mitochondrial mass and membrane potential were analysed by Mitotracker Green and JC-1 stains and by epifluorescence microscope. Expression of PGC1 , NRF1 and Tfam genes controlling mitochondrial biogenesis was studied by real-time PCR. The mitochondrial functionality was tested by cytochrome c oxidase activity and COXII expression. Mitochondrial proteomic profile was also performed. These assays showed that mitochondrial biogenesis and activity significantly increase in differentiating myotubes. The proteomic profile identifies 32 differentially expressed proteins, mostly involved in oxidative metabolism, typical of myotubes formation. Other notable proteins, such as superoxide dismutase (MnSOD), a cell protection molecule, and voltage-dependent anion-selective channel protein (VDAC1) involved in the mitochondria-mediated apoptosis, were found to be regulated by the myogenic process. The integration of these approaches represents a helpful tool for studying mitochondrial dynamics, biogenesis, and functionality in comparative surveys on mitochondrial pathogenic or senescent satellite cells. 1. Introduction Skeletal muscle represents an important model for studying mitochondrial behaviour during cell growth and differentiation. Myoblasts cultured in vitro, if induced by cell confluence and serum deprivation, follow a myogenic program, which includes an active proliferation, withdrawal from the cell cycle, synthesis of muscle-specific proteins, and fusion into multinucleated myotubes [1, 2]. This event is accomplished by the activation of specific myogenic regulatory factors (MRFs) [3–5]. Recent studies suggest that mitochondria are involved in the regulation of the skeletal muscle physiology and play a critical role in cell growth, cell proliferation, cell death, and cell differentiation [6–13]. In particular, mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression, the activity of myogenic factors, and by control of c-Myc expression [8, 14, 15]. Furthermore, differentiation appears to be a program which is dependent on both mitochondrial function and mitochondrial biogenesis, as indicated by the rapid increase in mitochondrial mass/volume, mtDNA copy number, mitochondrial enzyme activities, and mRNA
References
[1]
M. E. Pownall, M. K. Gustafsson, and C. P. Emerson Jr., “Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos,” Annual Review of Cell and Developmental Biology, vol. 18, pp. 747–783, 2002.
[2]
L. A. Sabourin and M. A. Rudnicki, “The molecular regulation of myogenesis,” Clinical Genetics, vol. 57, no. 1, pp. 16–25, 2000.
[3]
S. Dedieu, G. Mazères, P. Cottin, and J. J. Brustis, “Involvement of myogenic regulator factors during fusion in the cell line C2C12,” International Journal of Developmental Biology, vol. 46, no. 2, pp. 235–241, 2002.
[4]
M. R. Valdez, J. A. Richardson, W. H. Klein, and E. N. Olson, “Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4,” Developmental Biology, vol. 219, no. 2, pp. 287–298, 2000.
[5]
P. Ferri, E. Barbieri, S. Burattini et al., “Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts,” Journal of Cellular Biochemistry, vol. 108, no. 6, pp. 1302–1317, 2009.
[6]
C. D. Moyes, O. A. Mathieu-Costello, N. Tsuchiya, C. Filburn, and R. G. Hansford, “Mitochondrial biogenesis during cellular differentiation,” American Journal of Physiology, vol. 272, no. 4, pp. C1345–C1351, 1997.
[7]
C. S. Kraft, C. M. R. LeMoine, C. N. Lyons, D. Michaud, C. R. Mueller, and C. D. Moyes, “Control of mitochondrial biogenesis during myogenesis,” American Journal of Physiology, vol. 290, no. 4, pp. C1119–C1127, 2006.
[8]
P. Rochard, A. Rodier, F. Casas et al., “Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors,” The Journal of Biological Chemistry, vol. 275, no. 4, pp. 2733–2744, 2000.
[9]
H. Hoppeler and M. Flock, “Plasticity of skeletal muscle mitochondria: structure and function,” Medicine and Science in Sports and Exercise, vol. 35, no. 1, pp. 95–104, 2003.
[10]
S. Duguez, O. Sabido, and D. Freyssenet, “Mitochondrial-dependent regulation of myoblast proliferation,” Experimental Cell Research, vol. 299, no. 1, pp. 27–35, 2004.
[11]
K. Auré, G. Fayet, J. P. Leroy, E. Lacène, N. B. Romero, and A. Lombès, “Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation,” Brain, vol. 129, no. 5, pp. 1249–1259, 2006.
[12]
D. A. Hood, I. Irrcher, V. Ljubicic, and A. M. Joseph, “Coordination of metabolic plasticity in skeletal muscle,” Journal of Experimental Biology, vol. 209, no. 12, pp. 2265–2275, 2006.
[13]
F. G. S. Toledo, S. Watkins, and D. E. Kelley, “Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 3224–3227, 2006.
[14]
J. H. Miner and B. J. Wold, “c-myc Inhibition of MyoD and myogenin-initiated myogenic differentiation,” Molecular and Cellular Biology, vol. 11, no. 5, pp. 2842–2851, 1991.
[15]
P. Seyer, S. Grandemange, M. Busson et al., “Mitochondrial activity regulates myoblast differentiation by control of c-Myc expression,” Journal of Cellular Physiology, vol. 207, no. 1, pp. 75–86, 2006.
[16]
D. P. Kelly and R. C. Scarpulla, “Transcriptional regulatory circuits controlling mitochondrial biogenesis and function,” Genes and Development, vol. 18, no. 4, pp. 357–368, 2004.
[17]
D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005.
[18]
A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004.
[19]
C. Mammucari and R. Rizzuto, “Signaling pathways in mitochondrial dysfunction and aging,” Mechanisms of Ageing and Development, vol. 131, no. 7-8, pp. 536–543, 2010.
[20]
S. D. Gopinath and T. A. Rando, “Stem cell review series: aging of the skeletal muscle stem cell niche,” Aging Cell, vol. 7, no. 4, pp. 590–598, 2008.
[21]
A. Di Iorio, M. Abate, D. Di Renzo et al., “Sarcopenia: age-related skeletal muscle changes from determinants to physical disability,” International Journal of Immunopathology and Pharmacology, vol. 19, no. 4, pp. 703–719, 2006.
[22]
M. Cerletti, J. L. Shadrach, S. Jurga, R. Sherwood, and A. J. Wagers, “Regulation and function of skeletal muscle stem cells,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 317–322, 2008.
[23]
E. Sahin and R. A. Depinho, “Linking functional decline of telomeres, mitochondria and stem cells during ageing,” Nature, vol. 464, no. 7288, pp. 520–528, 2010.
[24]
A. D'Emilio, L. Biagiotti, S. Burattini et al., “Morphological and biochemical patterns in skeletal muscle apoptosis,” Histology and Histopathology, vol. 25, no. 1, pp. 21–32, 2010.
[25]
W. Pendergrass, N. Wolf, and M. Pool, “Efficacy of MitoTracker Green? and CMXRosamine to measure changes in mitochondrial membrane potentials in living cells and tissues,” Cytometry Part A, vol. 61, no. 2, pp. 162–169, 2004.
[26]
G. Szilágyi, L. Simon, P. Koska, G. Telek, and Z. Nagy, “Visualization of mitochondrial membrane potential and reactive oxygen species via double staining,” Neuroscience Letters, vol. 399, no. 3, pp. 206–209, 2006.
[27]
M. Mikula, A. Dzwonek, E. E. Hennig, and J. Ostrowski, “Increased mitochondrial gene expression during L6 cell myogenesis is accelerated by insulin,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 9, pp. 1815–1828, 2005.
[28]
M. W. Pfaffl, “A new mathematical model for relative quantification in real-time RT-PCR,” Nucleic Acids Research, vol. 29, no. 9, p. e45, 2001.
[29]
O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951.
[30]
M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[31]
P. Sestili, E. Barbieri, C. Martinelli et al., “Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts,” Molecular Nutrition and Food Research, vol. 53, no. 9, pp. 1187–1204, 2009.
[32]
P. Sinha, J. Poland, M. Schn?lzer, and T. Rabilloud, “A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis,” Proteomics, vol. 1, no. 7, pp. 835–840, 2001.
[33]
A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, “Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels,” Analytical Chemistry, vol. 68, no. 5, pp. 850–858, 1996.
[34]
M. Guescini, D. Guidolin, L. Vallorani et al., “C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction,” Experimental Cell Research, vol. 316, no. 12, pp. 1977–1984, 2010.
[35]
F. J. Miller, F. L. Rosenfeldt, C. Zhang, A. W. Linnane, and P. Nagley, “Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age,” Nucleic Acids Research, vol. 31, no. 11, p. e61, 2003.
[36]
Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999.
[37]
R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000.
[38]
N. Gleyzer, K. Vercauteren, and R. C. Scarpulla, “Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators,” Molecular and Cellular Biology, vol. 25, no. 4, pp. 1354–1366, 2005.
[39]
U. Andersson and R. C. Scarpulla, “PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells,” Molecular and Cellular Biology, vol. 21, no. 11, pp. 3738–3749, 2001.
[40]
M. A. Parisi and D. A. Clayton, “Similarity of human mitochondrial transcription factor 1 to high mobility group proteins,” Science, vol. 252, no. 5008, pp. 965–969, 1991.
[41]
M. Falkenberg, M. Gaspari, A. Rantanen, A. Trifunovic, N. G. Larsson, and C. M. Gustafsson, “Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA,” Nature Genetics, vol. 31, no. 3, pp. 289–294, 2002.
[42]
G. S. Shadel and D. A. Clayton, “Mitochondrial DNA maintenance in vertebrates,” Annual Review of Biochemistry, vol. 66, pp. 409–436, 1997.
[43]
T. Kanki, K. Ohgaki, M. Gaspari et al., “Architectural role of mitochondrial transcription factor a in maintenance of human mitochondrial DNA,” Molecular and Cellular Biology, vol. 24, no. 22, pp. 9823–9834, 2004.
[44]
D. A. Hood, “Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle,” Journal of Applied Physiology, vol. 90, no. 3, pp. 1137–1157, 2001.
[45]
K. Kim, A. Lecordier, and L. H. Bowman, “Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development,” Biochemical Journal, vol. 306, no. 2, pp. 353–358, 1995.
[46]
L. Casadei, L. Vallorani, A. M. Gioacchini et al., “Proteomics-based investigation in C2C12 myoblast differentiation,” European Journal of Histochemistry, vol. 53, no. 4, pp. 261–268, 2009.
[47]
M. P. Yaffe, “The machinery of mitochondrial inheritance and behavior,” Science, vol. 283, no. 5407, pp. 1493–1497, 1999.
[48]
P. R. Johnson, N. J. Dolman, M. Pope et al., “Non-uniform distribution of mitochondria in pancreatic acinar cells,” Cell and Tissue Research, vol. 313, no. 1, pp. 37–45, 2003.
[49]
J. I. E. Bruce, D. R. Giovannucci, G. Blinder, T. J. Shuttleworth, and D. I. Yule, “Modulation of [ ] signaling dynamics and metabolism by perinuclear mitochondria in mouse parotid acinar cells,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12909–12917, 2004.
[50]
T. J. Collins, M. J. Berridge, P. Lipp, and M. D. Bootman, “Mitochondria are morphologically and functionally heterogeneous within cells,” The EMBO Journal, vol. 21, no. 7, pp. 1616–1627, 2002.
[51]
M. Vendelin, N. Béraud, K. Guerrero et al., “Mitochondrial regular arrangement in muscle cells: a “crystal- like” pattern,” American Journal of Physiology, vol. 288, no. 3, pp. C757–C767, 2005.
[52]
H. Bo, Y. Zhang, and L. L. Ji, “Redefining the role of mitochondria in exercise: a dynamic remodeling,” Annals of the New York Academy of Sciences, vol. 1201, pp. 121–128, 2010.
[53]
S. Burattini, R. Ferri, M. Battistelli, R. Curci, F. Luchetti, and E. Falcieri, “CC murine myoblasts as a model of skeletal muscle development: morpho-functional characterization,” European Journal of Histochemistry, vol. 48, no. 3, pp. 223–233, 2004.
[54]
V. E. Jahnke, O. Sabido, and D. Freyssenet, “Control of mitochondrial biogenesis, ROS level, and cytosolic concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts,” American Journal of Physiology, vol. 296, no. 5, pp. C1185–C1194, 2009.
[55]
E. V. Menshikova, V. B. Ritov, R. E. Ferrell, K. Azuma, B. H. Goodpaster, and D. E. Kelley, “Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity,” Journal of Applied Physiology, vol. 103, no. 1, pp. 21–27, 2007.
[56]
P. K. Mouli, G. Twig, and O. S. Shirihai, “Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function,” Biophysical Journal, vol. 96, no. 9, pp. 3509–3518, 2009.
[57]
P. Rochard, I. Cassar-Malek, S. Marchal, C. Wrutniak, and G. Cabello, “Changes in mitochondrial activity during avian myoblast differentiation: influence of triiodothyronine or v-erb A expression,” Journal of Cellular Physiology, vol. 168, no. 2, pp. 239–247, 1996.
[58]
N. Hamai, M. Nakamura, and A. Asano, “Inhibition of mitochondrial protein synthesis impaired C2C12 myoblast differentiation,” Cell Structure and Function, vol. 22, no. 4, pp. 421–431, 1997.
[59]
D. M. Medeiros, “Assessing mitochondria biogenesis,” Methods, vol. 46, no. 4, pp. 288–294, 2008.
[60]
A. H. V. Remels, R. C. J. Langen, P. Schrauwen, G. Schaart, A. M. W. J. Schols, and H. R. Gosker, “Regulation of mitochondrial biogenesis during myogenesis,” Molecular and Cellular Endocrinology, vol. 315, no. 1-2, pp. 113–120, 2010.
[61]
N. Igosheva, A. Y. Abramov, L. Poston et al., “Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes,” PLoS ONE, vol. 5, no. 4, Article ID e10074, 2010.
[62]
A. Franko, S. Mayer, G. Thiel et al., “CREB-1α is recruited to and mediates upregulation of the cytochrome c promoter during enhanced mitochondrial biogenesis accompanying skeletal muscle differentiation,” Molecular and Cellular Biology, vol. 28, no. 7, pp. 2446–2459, 2008.
[63]
N. S. Tannu, V. K. Rao, R. M. Chaudhary et al., “Comparative proteomes of the proliferating C2C12 myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program,” Molecular and Cellular Proteomics, vol. 3, no. 11, pp. 1065–1082, 2004.
[64]
T. Kislinger, A. O. Gramolini, Y. Pan, K. Rahman, D. H. MacLennan, and A. Emili, “Proteome dynamics during C2C12 myoblast differentiation,” Molecular and Cellular Proteomics, vol. 4, no. 7, pp. 887–901, 2005.
[65]
J. Xie, S. Techritz, S. Haebel et al., “A two-dimensional electrophoretic map of human mitochondrial proteins from immortalized lymphoblastoid cell lines: a prerequisite to study mitochondrial disorders in patients,” Proteomics, vol. 5, no. 11, pp. 2981–2999, 2005.
[66]
C. Sauvanet, S. Duvezin-Caubet, J. P. di Rago, and M. Rojo, “Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics,” Seminars in Cell and Developmental Biology, vol. 21, no. 6, pp. 558–565, 2010.
[67]
S. Lee, H. Van Remmen, and M. Csete, “Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with aging,” Aging Cell, vol. 8, no. 3, pp. 296–310, 2009.
[68]
E. Sterrenburg, R. Turk, P. A. C. 'T Hoen et al., “Large-scale gene expression analysis of human skeletal myoblast differentiation,” Neuromuscular Disorders, vol. 14, no. 8-9, pp. 507–518, 2004.
[69]
V. Shoshan-Barmatz, A. Israelson, D. Brdiczka, and S. S. Sheu, “The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death,” Current Pharmaceutical Design, vol. 12, no. 18, pp. 2249–2270, 2006.
[70]
S. Burattini, M. Battistelli, and E. Falcieri, “Morpho-functional features of in-vitro cell death induced by physical agents,” Current Pharmaceutical Design, vol. 16, no. 12, pp. 1376–1386, 2010.
[71]
B. Huppertz, D. S. Tews, and P. Kaufmann, “Apoptosis and syncytial fusion in human placental trophoblast and skeletal muscle,” International Review of Cytology, vol. 205, pp. 215–253, 2001.
[72]
M. Sandri and U. Carraro, “Apoptosis of skeletal muscles during development and disease,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 12, pp. 1373–1390, 1999.
[73]
K. Walsh, “Coordinate regulation of cell cycle and apoptosis during myogenesis,” Progress in Cell Cycle Research, vol. 3, pp. 53–58, 1997.
[74]
P. Fernando, J. F. Kelly, K. Balazsi, R. S. Slack, and L. A. Megeney, “Caspase 3 activity is required for skeletal muscle differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11025–11030, 2002.
[75]
R. B. Freedman, T. R. Hirst, and M. F. Tuite, “Protein disulphide isomerase: building bridges in protein folding,” Trends in Biochemical Sciences, vol. 19, no. 8, pp. 331–336, 1994.
[76]
M. P. Rigobello, A. Donella-Deana, L. Cesaro, and A. Bindoli, “Isolation, purification, and characterization of a rat liver mitochondrial protein disulfide isomerase,” Free Radical Biology and Medicine, vol. 28, no. 2, pp. 266–272, 2000.
[77]
M. P. Rigobello, A. Donella-Deana, L. Cesaro, and A. Bindoli, “Distribution of protein disulphide isomerase in rat liver mitochondria,” Biochemical Journal, vol. 356, no. 2, pp. 567–570, 2001.
[78]
T. Ozaki, T. Yamashita, and S. I. Ishiguro, “ERp57-associated mitochondrial μ-calpain truncates apoptosis-inducing factor,” Biochimica et Biophysica Acta, vol. 1783, no. 10, pp. 1955–1963, 2008.
[79]
T. Kimura, T. Horibe, C. Sakamoto et al., “Evidence for mitochondrial localization of P5, a member of the protein disulphide isomerase family,” Journal of Biochemistry, vol. 144, no. 2, pp. 187–196, 2008.
[80]
L. J. Sweetlove, J. L. Heazlewood, V. Herald et al., “The impact of oxidative stress on Arabidopsis mitochondria,” Plant Journal, vol. 32, no. 6, pp. 891–904, 2002.
[81]
T. Trebitsh, E. Meiri, O. Ostersetzer, Z. Adam, and A. Danon, “The protein disulfide isomerase-like RB60 is partitioned between stroma and thylakoids in Chlamydomonas reinhardtii chloroplasts,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 4564–4569, 2001.