全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土体液化大变形研究进展与讨论

, PP. 143-148

Keywords: 土体,液化大变形,流体,孔压梯度,研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

从土体地震液化机制出发,将土体液化大变形的物理机制总结为循环剪切下剪胀与剪缩交替作用产生的累积变形和孔压上升、强度衰减后的流动变形2种类型,对液化大变形的2种物理机制解释分别进行了论述;概括了当前土体液化大变形预测和分析方法,对研究进展进行了评述;最后,指出了土体地震液化大变形研究中存在的分歧和争议,针对液化大变形机制提出了孔压梯度驱动土体液化流动大变形的假设,并对几种典型的液化大变形现象进行了解释和讨论。

References

[1]  seedhb,leekl.saturatedsandsduringcyclicloading[j].journalofsoilmechanicsandfoundationengineeringdivision,asce,1966,92(6):105-134.
[2]  castrog.liquefactionandcyclicmobilityofsaturatedsands[j].journalofthegeotechnicalengineeringdivision,1975,101(6):551-569.
[3]  刘汉龙,曾长女,周云东.饱和粉土液化后变形特性试验研究[j].岩土力学,2007,28(9):1866-1870.
[4]  王刚,张建民.砂土液化变形的数值模拟[j].岩土工程学报,2007,29(3):403-409.
[5]  张建民,王刚.砂土液化后的大变形机理[j].岩土工程学报,2006,28(7):835-840.
[6]  王刚,张建民.液化砂土大变形的弹塑性循环本构模型[j].岩土工程学报,2007,29(1):51-59.
[7]  yoshdih,tokimastuk,sugiymat,etal.practicalthree-dimensionaleffectivestressanalysisconsideringcyclicmobilitybehavior[c]//the14thworldconferenceofearthquakeengineering.beijing:seismologicalpress,2008.
[8]  towahatai,sassakiy,tokidak,etal.predictionofpermanentdisplacementofliquefiedgroundbymeansofminimumenergyprinciple[j].soilsandfoundations,1992,32(3):97-116.
[9]  huwangji,kimcy,chungck,etal.viscousfluidcharacteristicsofliquefiedsoilsandbehaviorofpilessubjectedtoflowofliquefiedsoils[j].soildynamicsandearthquakeengineering,2006,26(2/3/4):313-323.
[10]  uzuokar,yashimaa,kawakamit,etal.fluiddynamicsbasedpredictionofliquefactioninducedlateralspreading[j].computersandgeotechnics,1998,22(3/4):243-82.
[11]  sawickia,mierczynskij.onthebehaviorofliquefiedsoil[j].computersandgeotechnics,2009,36(4):531-536.
[12]  陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[j].岩土工程学报,2006,28(9):1139-1143.
[13]  linghi,mohriy,kawatabat,etal.centrifugalmodelingofseismicbehavioroflarge-diameterpipeinliquefiablesoil[j].journalofgeotechnicalandgeoenvironmentalengineering,2003,129(12):1092-1101.
[14]  gonzalezl,abdount,dobryrd.effectofsoilpermeabilityoncentrifugemodelingofpileresponsetolateralspreading[j].journalofgeotechnicalandgeoenvironmentalengineering,2009,135(1):62-73.
[15]  sharpmk,dobryrd,abdount.liquefactioncentrifugemodelingofsandsofdifferentpermeability[j].journalofgeotechnicalandgeoenvironmentalengineering,2003,129(12):1083-1091.
[16]  gonzalezm,ubillaj,abdount,etal.theroleofsoilcompressibilityincentrifugemodeltestsofpilesfoundationundergoinglateralspreadingofliquefiedsoil[c]//geotechnicalearthquakeengineeringandsoildynamicsⅳ.california:asce,2008.
[17]  towhatai,vargas-mongem,orenserp,etal.shakingtabletestsonsubgradereactionofpipeembeddedinsandyliquefiedsubsoil[j].soildynamicsandearthquakeengineering,1999,18(5):347-361.
[18]  ichiik,seton,kiderah.characteristicsofupliftingvelocityofaburiedpipeinliquefactionground[c]//geotechnicalearthquakeengineeringandsoildynamicsⅳ.california:asce,2008.
[19]  陈文化,门福禄,景立平,等.有建筑物存在时的饱和砂土地基液化振动台模拟试验研究[j].地震工程与工程振动,1998,18(4):54-60.
[20]  凌贤长,唐亮,于恩庆.可液化场地地震振动孔隙水压力增长研究的大型振动台试验及其数值模拟[j].岩石力学与工程学报,2006,25:3998-4003.
[21]  袁晓铭,李雨润,孙锐.地面横向往返运动下可液化土层中桩基响应机理研究[j].土木工程学报,2008,41(9):103-110.
[22]  王建华,戚春香,余正春,等.弱化饱和砂土中桩的p-y曲线与极限抗力研究[j].岩土工程学报,2008,30(3):309-315.
[23]  hamadam,yasuda,isoyamar,etal.studyonliquefaction-inducedpermanentgrounddisplacementsandearthquakedamage[j].computersandgeotechinics,1987,11(4):197-220.
[24]  bartlets,youdtl.empiricalpredictionoflateralspreadingdisplacement[c]//proceedingsfromthe4thus-japanworkshoponearthquakeresistantdesignoflifelinefacilitiesandcounter-measuresagainstsoilliquefaction.honolulu:[s.n.],1992.
[25]  poulossj,castrog,francej.liquefactionevaluationprocedure[j].journalofgeotechnicalengineering,1985,111(6):772-792.
[26]  汪闻韶.土工抗震研究进展[j].岩土工程学报,1993,15(6):80-82.
[27]  yangzh,elgamala,parrae.computationalmodelforcyclicmobilityandassociatedsheardeformation[j].journalofgeotechnicalandgeoenvironmentalengineering,2003,129(12):1119-1127.
[28]  elgamala,yangzh,parrae.computationalmodelingofcyclicmobilityandpost-liquefactionsiteresponse[j].soildynamicsandearthquakeengineering,2002,22(4):259-271.
[29]  grootmbd,kudellam,meigerp,etal.liquefactionphenomenaunderneathmarinegravitystructuressubjectedtowaveloads[j].journalofwaterway,port,coastalandoceanengineering,asce,2006,132(4):323-335.
[30]  hydeafl,higuchit,yasuharak.liquefaction,cyclicmobility,andfailureofsilt[j].journalofgeotechnicalandgeoenvironmentalengineering,2006,132(6):716-735.
[31]  hamadam,wakamatsuk.astudyongrounddisplacementcausedbysoilliquefaction[j].journalofgeotechnicalengineering,1998,43():189-208.
[32]  dungcajr,kuwanoj,saruwatarit,etal.shakingtabletestsonthelateralresponseofapileburiedinliquefiedsand[j].soildynamicsandearthquakeengineering,2006,26:287-295.
[33]  zhangj,zhaojx.empiricalmodelsforestimatingliquefaction-inducedlateralspreaddisplacement[j].soildynamicsandearthquakeengineering,2005,25(6):439-450.
[34]  景立平,王绍博,张荣祥.砂土液化诱发的地面侧移机理研究[j].地震工程与工程振动,1996,16(3):128-136.
[35]  rollinskm,gerbertm,lanejd,etal.lateralresistanceofafull-scalepilegroupinliquefiedsand[j].journalofgeotechnicalandgeoenvironmentalengineering,2005,131(1):115-125.
[36]  taiebatm,shahirh,paka.studyofporepressurevariationduringliquefactionusingtwoconstitutivemodelsforsand[j].soilmechanicsandearthquakeengineering,2007,27(1):60-72.
[37]  刘华北,宋二祥.饱和可液化土中地下结构在震后固结中的响应[j].岩土力学,2007,28(4):705-710.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133