OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
基于扩展有限元法的弹塑性裂纹扩展研究
DOI: 10.3969/j.issn.1671-7627.2014.04.010, PP. 50-57
Keywords: 扩展有限元,裂纹扩展,应力强度因,j积分
Abstract:
为了得到紧凑拉伸(ct)试样应力强度因子和j积分,分别采用传统有限元法、扩展有限元法以及试验方法对其进行计算。在弹性情况下,扩展有限元法和传统有限元法获得的应力强度因子相近,并且与astme1820—05a解相差很小。在弹塑性情况下,扩展有限元法和传统有限元法获得的应力场和j积分有较大的差别,扩展有限元法得到的j积分相对于传统有限元法的结果与实验值更吻合。结果表明:扩展有限元法由于考虑了裂纹扩展,比传统有限元法可以更加准确合理地模拟弹塑性裂纹扩展。
References
[1] | nakanishih,taketomiy,wasakij,etal.studyonfastcrackpropagationandarrest[j].nipponkikaigakkaironbunshu,ahen/transactionsofthejapansocietyofmechanicalengineers,1998,54:57-63.
|
[2] | roekl,siegmundt.anirreversiblecohesivezonemodelforinterfacefatiguecrackgrowthsimulation[j].engineeringfracturemechanics,2003,70:209-232.
|
[3] | bouvardjl,chabochejl,feyelf.acohesivezonemodelforfatigueandcreep:fatiguecrackgrowthinsinglecrystalsuperalloys[j].internationaljournaloffatigue,2009,31(5):868-879.
|
[4] | liupf,housj,chujk.finiteelementanalysisofpostbucklinganddelaminationofcompositelaminatesusingvirtualcrackclosuretechnique[j].compositestructures,2011,3(6):1549-1560.
|
[5] | marianis,peregou.extendedfiniteelementmethodforquasi-brittlefracture[j].internationaljournalfornumericalmethodsinengineering,2003,58:103-126.
|
[6] | larssonr,fagerströmm.aframeworkforfracturemodelingbasedonthematerialforesconceptwithxfemkinematics[j].internationaljournalfornumericalmethodsinengineering,2005,62:354-381.
|
[7] | dolbowj,moësn,belytschkot.anextendedfiniteelementmethodformodelingcrackgrowthwithfrictionalcontact[j].computermethodsinappliedmechanicsandengineering,2000,36:235-260.
|
[8] | labordep,pommierj,renardy,etal.high-orderextendedfiniteelementmethodforcrackeddomains[j].internationaljournalfornumericalmethodsinengineering,2005,64:354-381.
|
[9] | chahinee,labordep,renardy.aquasi-optimalconvergenceresultforfracturemechanicswithxfem[j].computesrendusmathematigue,2006,342:527-532.
|
[10] | changy,chenggj.anextendedfiniteelementmethod(xfem)studyontheeffectofreinforcingparticlesonthecrackpropagationbehaviorinametal-matrixcomposite[j].internationaljournaloffatigue,2012,44:151-156.
|
[11] | golewskigl,golewskip,sadowskit.numericalmodelingcrackpropagationundermodeⅱfractureinplainconcretescontainingsiliceousfly-ashadditiveusingxfemmethod[j].computationalmaterialsscience,2012,62:75-78.
|
[12] | prosenjitd,singhiv,jayaganthanr.anexperimentalevaluationofmaterialpropertiesandfracturesimulationofcryorolled7075alalloy[j].journalofmaterialsengineeringandperformance,2012,21(7):1167-1181.
|
[13] | 茹忠亮,朱传锐,张友良,等.断裂问题的扩展有限元法研究[j].岩土力学,2011,32(7):2171-2176.
|
[14] | 茹忠亮,朱传锐,赵洪波.裂纹扩展问题的改进xfem算法[j].工程力学,2012,29(7):12-16,23.
|
[15] | 方修君,金峰.基于abaqus平台的扩展有限元法[j].工程力学,2007,24(7):6-10.
|
[16] | 董玉文,余天堂,任青文.直接计算应力强度因子的扩展有限元法[j].计算力学学报,2008,25(1):72-77.
|
[17] | 余天堂.模拟三维裂纹问题的扩展有限元法[j].岩土力学,2010,31(10):3280-3285.
|
[18] | swensond,ingraffeaa.modelingmixedmodedynamiccrackpropagationusingfiniteelementstheoryandapplications[j].computationalmechanics,1988,3:381-397.
|
[19] | belytschkot,krongauzy,organd,etal.meshlessmethods:anoverviewandrecentdevelopments[j].computermethodsinappliedmechanicsandengineering,1996,139:3-47.
|
[20] | moesn,dolbowj,belytschkot.afiniteelementmethodforcrackgrowthwithoutremeshing[j].internationaljournalfornumericalmethodsinengineering,1999,46:131-150.
|
[21] | liupf,zhangbj,zhengjy.finiteelementanalysisofplasticcollapseandcrackbehaviorofsteelpressurevesselsandpipingusingxfem[j].journaloffailureanalysisandprevention,2012,12:707-718.
|
[22] | astminternational.standardtestmethodformeasurementoffracturetoughness[s].westconshohocken:americansocietyfortestingandmaterials,2005.
|
[23] | kimyj,shimdj,huhns,etal.plasticlimitpressuresforcrackedpipesusingfiniteelementlimitanalyses[j].internationaljournalofpressurevesselsandpiping,2002,79:321-330.
|
[24] | moesn,belytschkot.extendedfiniteelementmethodforcohesivecrackgrowth[j].engineeringfracturemechanics,2002,69(7):813-833.
|
[25] | 解得,钱勤,李长安.断裂力学中的数值计算方法及工程应用[m].北京:科学出版社,2009.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|