全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于扩展有限元法的弹塑性裂纹扩展研究

DOI: 10.3969/j.issn.1671-7627.2014.04.010, PP. 50-57

Keywords: 扩展有限元,裂纹扩展,应力强度因,j积分

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了得到紧凑拉伸(ct)试样应力强度因子和j积分,分别采用传统有限元法、扩展有限元法以及试验方法对其进行计算。在弹性情况下,扩展有限元法和传统有限元法获得的应力强度因子相近,并且与astme1820—05a解相差很小。在弹塑性情况下,扩展有限元法和传统有限元法获得的应力场和j积分有较大的差别,扩展有限元法得到的j积分相对于传统有限元法的结果与实验值更吻合。结果表明:扩展有限元法由于考虑了裂纹扩展,比传统有限元法可以更加准确合理地模拟弹塑性裂纹扩展。

References

[1]  nakanishih,taketomiy,wasakij,etal.studyonfastcrackpropagationandarrest[j].nipponkikaigakkaironbunshu,ahen/transactionsofthejapansocietyofmechanicalengineers,1998,54:57-63.
[2]  roekl,siegmundt.anirreversiblecohesivezonemodelforinterfacefatiguecrackgrowthsimulation[j].engineeringfracturemechanics,2003,70:209-232.
[3]  bouvardjl,chabochejl,feyelf.acohesivezonemodelforfatigueandcreep:fatiguecrackgrowthinsinglecrystalsuperalloys[j].internationaljournaloffatigue,2009,31(5):868-879.
[4]  liupf,housj,chujk.finiteelementanalysisofpostbucklinganddelaminationofcompositelaminatesusingvirtualcrackclosuretechnique[j].compositestructures,2011,3(6):1549-1560.
[5]  marianis,peregou.extendedfiniteelementmethodforquasi-brittlefracture[j].internationaljournalfornumericalmethodsinengineering,2003,58:103-126.
[6]  larssonr,fagerströmm.aframeworkforfracturemodelingbasedonthematerialforesconceptwithxfemkinematics[j].internationaljournalfornumericalmethodsinengineering,2005,62:354-381.
[7]  dolbowj,moësn,belytschkot.anextendedfiniteelementmethodformodelingcrackgrowthwithfrictionalcontact[j].computermethodsinappliedmechanicsandengineering,2000,36:235-260.
[8]  labordep,pommierj,renardy,etal.high-orderextendedfiniteelementmethodforcrackeddomains[j].internationaljournalfornumericalmethodsinengineering,2005,64:354-381.
[9]  chahinee,labordep,renardy.aquasi-optimalconvergenceresultforfracturemechanicswithxfem[j].computesrendusmathematigue,2006,342:527-532.
[10]  changy,chenggj.anextendedfiniteelementmethod(xfem)studyontheeffectofreinforcingparticlesonthecrackpropagationbehaviorinametal-matrixcomposite[j].internationaljournaloffatigue,2012,44:151-156.
[11]  golewskigl,golewskip,sadowskit.numericalmodelingcrackpropagationundermodeⅱfractureinplainconcretescontainingsiliceousfly-ashadditiveusingxfemmethod[j].computationalmaterialsscience,2012,62:75-78.
[12]  prosenjitd,singhiv,jayaganthanr.anexperimentalevaluationofmaterialpropertiesandfracturesimulationofcryorolled7075alalloy[j].journalofmaterialsengineeringandperformance,2012,21(7):1167-1181.
[13]  茹忠亮,朱传锐,张友良,等.断裂问题的扩展有限元法研究[j].岩土力学,2011,32(7):2171-2176.
[14]  茹忠亮,朱传锐,赵洪波.裂纹扩展问题的改进xfem算法[j].工程力学,2012,29(7):12-16,23.
[15]  方修君,金峰.基于abaqus平台的扩展有限元法[j].工程力学,2007,24(7):6-10.
[16]  董玉文,余天堂,任青文.直接计算应力强度因子的扩展有限元法[j].计算力学学报,2008,25(1):72-77.
[17]  余天堂.模拟三维裂纹问题的扩展有限元法[j].岩土力学,2010,31(10):3280-3285.
[18]  swensond,ingraffeaa.modelingmixedmodedynamiccrackpropagationusingfiniteelementstheoryandapplications[j].computationalmechanics,1988,3:381-397.
[19]  belytschkot,krongauzy,organd,etal.meshlessmethods:anoverviewandrecentdevelopments[j].computermethodsinappliedmechanicsandengineering,1996,139:3-47.
[20]  moesn,dolbowj,belytschkot.afiniteelementmethodforcrackgrowthwithoutremeshing[j].internationaljournalfornumericalmethodsinengineering,1999,46:131-150.
[21]  liupf,zhangbj,zhengjy.finiteelementanalysisofplasticcollapseandcrackbehaviorofsteelpressurevesselsandpipingusingxfem[j].journaloffailureanalysisandprevention,2012,12:707-718.
[22]  astminternational.standardtestmethodformeasurementoffracturetoughness[s].westconshohocken:americansocietyfortestingandmaterials,2005.
[23]  kimyj,shimdj,huhns,etal.plasticlimitpressuresforcrackedpipesusingfiniteelementlimitanalyses[j].internationaljournalofpressurevesselsandpiping,2002,79:321-330.
[24]  moesn,belytschkot.extendedfiniteelementmethodforcohesivecrackgrowth[j].engineeringfracturemechanics,2002,69(7):813-833.
[25]  解得,钱勤,李长安.断裂力学中的数值计算方法及工程应用[m].北京:科学出版社,2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133