全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

统一黏塑性模型对9%-12%cr马氏体耐热钢低周疲劳特性的数值模拟

DOI: 10.3969/j.issn.1671-7627.2014.06.013, PP. 72-77

Keywords: 马氏体耐热钢,低周疲劳,chaboche模型,微观损伤

Full-Text   Cite this paper   Add to My Lib

Abstract:

9%-12%cr马氏体耐热钢凭借其优异的综合性能,广泛应用于超超临界发电厂的主要部件。简要地概述了9%-12%cr钢在循环载荷作用下的微观损伤机制,将材料微观组织演化过程与统一chaboche黏塑性模型中内变量的变化相关联,应用chaboche模型预测9%-12%cr钢中p91钢,在500℃时不同应变幅值和不同应变速率条件下的循环应力-应变迟滞回线,将预测结果与已报道的试验数据进行比较,结果表明:不同条件下,该模型可以很好地预测p91钢的循环应力-应变迟滞回线,模型中运动硬化变量x描述材料在循环初期的应变强化现象,各向同性硬化变量r主要描述材料软化现象。

References

[1]  mrozz.onthedescriptionofanisotropicworkhardening[j].journalofthemechanicsandphysicsofsolids,1967,15(3):163-175.
[2]  robinsondn,pughce,corumjm.constitutiveequationsfordescribinghigh-temperatureinelasticbehaviorofstructuralalloys[r].tennessee:oakridgenationallaboratory,1976.
[3]  chabochejl.constitutiveequationsforcyclicplasticityandcyclicviscoplasticity[j].internationaljournalofplasticity,1989,5(3):247-302.
[4]  ohnon.constitutivemodelingofcyclicplasticitywithemphasisonratchetting[j].internationaljournalofmechanicalsciences,1998,40(2):251-261.
[5]  yeomjt,williamssj,kimis,etal.unifiedviscoplasticmodelsforlowcyclefatiquebehaviorofwaspaloy[j].metalsandmaterialsinternational,2001,7(3):233-240.
[6]  kannanr,srinivasanvs,valsanm,etal.hightemperaturelowcyclefatiguebehaviourofp92tungstenadded9crsteel[j].transactionsoftheindianinstituteofmetals,2010,63(2/3):571-574.
[7]  zhangz,delagnesd,bernhartg.anisothermalcyclicplasticitymodellingofmartensiticsteels[j].internationaljournaloffatigue,2002,24(6):635-648.
[8]  mariappank,shankarv,sandhyar,etal.dynamicstrainagingbehaviorofmodified9cr-1moandreducedactivationferriticmartensiticsteelsunderlowcyclefatigue[j].journalofnuclearmaterials,2013,435(1):207-213.
[9]  shankarv,mariappank,nageshaa,etal.effectoftungstenandtantalumonthelowcyclefatiguebehaviorofreducedactivationferritic/martensiticsteels[j].fusionengineeringanddesign,2012,87(4):318-324.
[10]  zhouhw,heyz,zhangh,etal.influenceofdynamicstrainagingpre-treatmentonthelow-cyclefatiguebehaviorofmodified9cr-1mosteel[j].internationaljournaloffatigue,2013,47:83-89.
[11]  nageshaa,kannanr,sastrygvs,etal.isothermalandthermomechanicalfatiguestudiesonamodified9cr-1moferriticmartensiticsteel[j].materialsscienceandengineering:a,2012,554:95-104.
[12]  armstrongpj,frederickco.amathematicalrepresentationofthemultiaxialbauschingereffect,cegbrd/b/n731[r].berkely:nuclearlaboratories,1966.
[13]  shiblia,starrf.someaspectsofplantandresearchexperienceintheuseofnewhighstrengthmartensiticsteelp91[j].internationaljournalofpressurevesselsandpiping,2007,84(1):114-122.
[14]  zinklesj,wasgs.materialschallengesinnuclearenergy[j].actamaterialia,2013,61(3):735-758.
[15]  tongj,vermeulenb.thedescriptionofcyclicplasticityandviscoplasticityofwaspaloyusingunifiedconstitutiveequations[j].internationaljournaloffatigue,2003,25(5):413-420.
[16]  kimtw,kangdh,yeomjt,etal.continuumdamagemechanics-basedcreep-fatigue-interactedlifepredictionofnickel-basedsuperalloyathightemperature[j].scriptamaterialia,2007,57(12):1149-1152.
[17]  石多奇,杨晓光,王延荣.耦合蠕变损伤的chaboche黏塑性本构方程的应用[j].航空动力学报,2005,20(1):60-65.
[18]  张克实,brocksw.chaboche热黏塑性损伤模型的应用研究[j].航空动力学报,2002,17(5):615-622.
[19]  aktaaj,schmittr.hightemperaturedeformationanddamagebehaviorofrafmsteelsunderlowcyclefatigueloading:experimentsandmodeling[j].fusionengineeringanddesign,2006,81(19):2221-2231.
[20]  barrettra,o’donoghuepe,leensb.animprovedunifiedviscoplasticconstitutivemodelforstrain-ratesensitivityinhightemperaturefatigue[j].internationaljournaloffatigue,2013,48:192-204.
[21]  barcelof,cozzikat.creep-fatigueinteractionsina9pctcr-1pctmomartensiticsteel:partii.microstructuralevolutions[j].metallurgicalandmaterialstransactionsa,2009,40(2):330-341.
[22]  saadaa,sunw,hydeth,etal.cyclicsofteningbehaviourofap91steelunderlowcyclefatigueathightemperature[j].procediaengineering,2011,10:1103-1108.
[23]  phamms,solenthalerc,janssenskgf,etal.dislocationstructureevolutionanditseffectsoncyclicdeformationresponseofaisi316lstainlesssteel[j].materialsscienceandengineering:a,2011,528(7):3261-3269.
[24]  armasaf,petersenc,schmittr,etal.cyclicinstabilityofmartensitelathsinreducedactivationferritic/martensiticsteels[j].journalofnuclearmaterials,2004,329:252-256.
[25]  vorpahlc,möslanga,riethm.creep-fatigueinteractionandrelatedstructurepropertycorrelationsofeurofer97steelat550℃bydecouplingcreepandfatigueload[j].journalofnuclearmaterials,2011,417(1):16-19.
[26]  zhanzl,tongj.astudyofcyclicplasticityandviscoplasticityinanewnickel-basedsuperalloyusingunifiedconstitutiveequations.parti:evaluationanddeterminationofmaterialparameters[j].mechanicsofmaterials,2007,39(1):64-72.
[27]  saadaa,hydecj,sunw,etal.thermal-mechanicalfatiguesimulationofap91steelinatemperaturerangeof400-600℃[j].materialsathightemperatures,2011,28(3):212-218.
[28]  koogh,kwonjh.identificationofinelasticmaterialparametersformodified9cr-1mosteelapplicabletotheplasticandviscoplasticconstitutiveequations[j].internationaljournalofpressurevesselsandpiping,2011,88(1):26-33.
[29]  necibk,revelp.modelisationofmechanicalbehaviorofagrade12%crsteelcoatingmaterial[j].materialsscienceandengineering:a,1997,237(1):126-131.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133