全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工业纯钛中低温拉伸行为的温度与应变速率敏感性

DOI: 10.3969/j.issn.1671-7627.2015.04.010, PP. 50-56

Keywords: 工业纯钛,温度敏感性,应变速率敏感性,本构方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合拉伸实验数据和断口形貌分析发现,中低温下工业纯钛的拉伸应力-应变曲线随着温度的升高和应变速率的降低不断降低,拉伸行为存在温度软化与应变速率强化现象,并且拉伸行为的温度敏感性强于应变速率敏感性。基于工业纯钛强度参量随着温度和应变速率的变化规律得到了定量的工业纯钛强度参量与温度和应变速率的关系式。为了定量地描述工业纯钛中低温拉伸应力-应变曲线的温度与应变速率敏感性,对arrhenius方程、johnsoncook(jc)方程和modifiedzerilli-armstrong(mza)方程在工业纯钛中低温拉伸行为的应用进行比较发现,arrhenius方程的预测精度最高,mza方程次之,而jc方程的预测精度最低。

References

[1]  zengz,jonssons,rovenhj.theeffectsofdeformationconditionsonmicrostructureandtextureofcommerciallypureti[j].actamaterialia,2009,57(19):5822-5833.
[2]  zengz,zhangy,jonssons.microstructureandtextureevolutionofcommercialpuretitaniumdeformedatelevatedtemperatures[j].materialsscienceandengineeringa,2009,513:83-90.
[3]  zengz,jonssons,zhangy.constitutiveequationsforpuretitaniumatelevatedtemperatures[j].materialsscienceandengineeringa,2009,505(1):116-119.
[4]  zengz,zhangy,jonssons.deformationbehaviourofcommerciallypuretitaniumduringsimplehotcompression[j].materials&design,2009,30(8):3105-3111.
[5]  马秋林,张莉,徐宏,等.工业纯钛ta2室温蠕变第1阶段特性研究[j].稀有金属材料与工程,2007,36(1):11-14.
[6]  张莉,徐宏,马秋林,等.工业纯钛ta2的低温蠕变行为[j].稀有金属材料与工程,2009,37(12):2114-2117.
[7]  yamadat,kawabatak,satoe,etal.presencesofprimarycreepinvariousphasemetalsandalloysatambienttemperature[j].materialscienceandengineeringa,2004,387:719-722.
[8]  caimc,niuls,maxf,etal.aconstitutivedescriptionofthestrainrateandtemperatureeffectsonthemechanicalbehaviorofmaterials[j].mechanicsofmaterials,2010,42(8):774-781.
[9]  astmenternational.standardtestmethodsfortensionoftestingofmetallicmaterials[s].westconshohocken:americansocietyfortestingandmaterials,2011.
[10]  陈翔,龚明,夏源明.工业纯钛高温动态拉伸力学行为的微观机制[j].中国科学技术大学学报,2009(6):619-626.
[11]  shixq,zhouw,wangzp,etal.effectoftemperatureandstrainrateonmechanicalpropertiesof63sn/37pbsolderalloy[j].journalofelectronicpackaging,1999,121(3):179-185.
[12]  张朝阳,刘金榕,李瑞,等.incoloy800h高温变形流动应力预测模型[j].金属学报,2011,47(2):191-196.
[13]  rohri,nahmeh,thomak,etal.materialcharacterisationandconstitutivemodellingofatungsten-sinteredalloyforawiderangeofstrainrates[j].internationaljournalofimpactengineering,2008,35(8):811-819.
[14]  matsunagat,takahashik,kameyamat,etal.relaxationmechanismsatgrainboundariesforambient-temperaturecreepofhcpmetals[j].materialsscienceandengineeringa,2009,510:356-358.
[15]  tanakah,yamadat,satoe,etal.distinguishingtheambienttemperaturecreepregioninadeformationmechanismmapofannealedcp-ti[j].scriptamater,2006,54:121-124.
[16]  pengj,zhoucy,daiq,etal.thetemperatureandstressdependentprimarycreepofcp-tiatlowandintermediatetemperature[j].materialsscienceandengineeringa,2014,611:123-135.
[17]  pengj,zhoucy,daiq,etal.fatigueandratchetingbehaviorsofcp-tiatroomtemperature[j].materialsscienceandengineeringa,2014,590:329-337.
[18]  samantarayd,mandals,bhaduriak,etal.anoverviewonconstitutivemodellingtopredictelevatedtemperatureflowbehaviouroffastreactorstructuralmaterials[j].transactionsoftheindianinstituteofmetals,2010,63(6):823-831.
[19]  samantarayd,mandals,bhaduriak.acomparativestudyonjohnsoncook,modifiedzerilli-armstrongandarrhenius-typeconstitutivemodelstopredictelevatedtemperatureflowbehaviourinmodified9cr-1mosteel[j].computationalmaterialsscience,2009,47(2):568-576.
[20]  linyc,chenxm.acriticalreviewofexperimentalresultsandconstitutivedescriptionsformetalsandalloysinhotworking[j].materials&design,2011,32(4):1733-1759.
[21]  lim,chengs,xionga,etal.acquiringanovelconstitutiveequationofatc6alloyathigh-temperaturedeformation[j].journalofmaterialsengineeringandperformance,2005,14(2):263-266.
[22]  songsx,hortonja,kimnj,etal.deformationbehaviorofatwin-roll-castmg-6zn-0.5mn-0.3cu-0.02zralloyatintermediatetemperatures[j].scriptamaterialia,2007,56(5):393-395.
[23]  huangyc,linyc,dengj.hottensiledeformationbehaviorsandconstitutivemodelof42crmosteel[j].materials&design,2014,53:344-356.
[24]  linyc,chenms,zhangj.modelingofflowstressof42crmosteelunderhotcompression[j].materialsscienceandengineeringa,2009,499(1):88-92.
[25]  houqy,wangjt.amodifiedjohnson-cookconstitutivemodelformg-gd-yalloyextendedtoawiderangeoftemperatures[j].computationalmaterialsscience,2010,50(1):147-152.
[26]  wangy,zhouy,xiay.aconstitutivedescriptionoftensilebehaviorforbrassoverawiderangeofstrainrates[j].materialsscienceandengineeringa,2004,372(1):186-190.
[27]  vuralm,ravichandrang,ritteld.largestrainmechanicalbehaviorof1018cold-rolledsteeloverawiderangeofstrainrates[j].metallurgicalandmaterialstransactionsa,2003,34(12):2873-2885.
[28]  samantarayd,mandals,bhaduriak,etal.analysisandmathematicalmodellingofelevatedtemperatureflowbehaviourofausteniticstainlesssteels[j].materialsscienceandengineeringa,2011,528(4):1937-1943.
[29]  samantarayd,mandals,borahu,etal.athermo-viscoplasticconstitutivemodeltopredictelevated-temperatureflowbehaviourinatitanium-modifiedausteniticstainlesssteel[j].materialsscienceandengineering:a,2009,526(1):1-6.
[30]    
[31]  longfw,jiangqw,xiaol,etal.compressivedeformationbehaviorsofcoarse-andultrafine-grainedpuretitaniumatdifferenttemperatures:acomparativestudy[j].materialstransactions,2011,52(8):1617-1622.
[32]  neerajt,houdh,daehngs,etal.phenomenologicalandmicrostructuralanalysisofroomtemperaturecreepintitaniumalloys[j].actamaterialia,2000,48(6):1225-1238.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133