OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
工业纯钛中低温拉伸行为的温度与应变速率敏感性
DOI: 10.3969/j.issn.1671-7627.2015.04.010, PP. 50-56
Keywords: 工业纯钛,温度敏感性,应变速率敏感性,本构方程
Abstract:
结合拉伸实验数据和断口形貌分析发现,中低温下工业纯钛的拉伸应力-应变曲线随着温度的升高和应变速率的降低不断降低,拉伸行为存在温度软化与应变速率强化现象,并且拉伸行为的温度敏感性强于应变速率敏感性。基于工业纯钛强度参量随着温度和应变速率的变化规律得到了定量的工业纯钛强度参量与温度和应变速率的关系式。为了定量地描述工业纯钛中低温拉伸应力-应变曲线的温度与应变速率敏感性,对arrhenius方程、johnsoncook(jc)方程和modifiedzerilli-armstrong(mza)方程在工业纯钛中低温拉伸行为的应用进行比较发现,arrhenius方程的预测精度最高,mza方程次之,而jc方程的预测精度最低。
References
[1] | zengz,jonssons,rovenhj.theeffectsofdeformationconditionsonmicrostructureandtextureofcommerciallypureti[j].actamaterialia,2009,57(19):5822-5833.
|
[2] | zengz,zhangy,jonssons.microstructureandtextureevolutionofcommercialpuretitaniumdeformedatelevatedtemperatures[j].materialsscienceandengineeringa,2009,513:83-90.
|
[3] | zengz,jonssons,zhangy.constitutiveequationsforpuretitaniumatelevatedtemperatures[j].materialsscienceandengineeringa,2009,505(1):116-119.
|
[4] | zengz,zhangy,jonssons.deformationbehaviourofcommerciallypuretitaniumduringsimplehotcompression[j].materials&design,2009,30(8):3105-3111.
|
[5] | 马秋林,张莉,徐宏,等.工业纯钛ta2室温蠕变第1阶段特性研究[j].稀有金属材料与工程,2007,36(1):11-14.
|
[6] | 张莉,徐宏,马秋林,等.工业纯钛ta2的低温蠕变行为[j].稀有金属材料与工程,2009,37(12):2114-2117.
|
[7] | yamadat,kawabatak,satoe,etal.presencesofprimarycreepinvariousphasemetalsandalloysatambienttemperature[j].materialscienceandengineeringa,2004,387:719-722.
|
[8] | caimc,niuls,maxf,etal.aconstitutivedescriptionofthestrainrateandtemperatureeffectsonthemechanicalbehaviorofmaterials[j].mechanicsofmaterials,2010,42(8):774-781.
|
[9] | astmenternational.standardtestmethodsfortensionoftestingofmetallicmaterials[s].westconshohocken:americansocietyfortestingandmaterials,2011.
|
[10] | 陈翔,龚明,夏源明.工业纯钛高温动态拉伸力学行为的微观机制[j].中国科学技术大学学报,2009(6):619-626.
|
[11] | shixq,zhouw,wangzp,etal.effectoftemperatureandstrainrateonmechanicalpropertiesof63sn/37pbsolderalloy[j].journalofelectronicpackaging,1999,121(3):179-185.
|
[12] | 张朝阳,刘金榕,李瑞,等.incoloy800h高温变形流动应力预测模型[j].金属学报,2011,47(2):191-196.
|
[13] | rohri,nahmeh,thomak,etal.materialcharacterisationandconstitutivemodellingofatungsten-sinteredalloyforawiderangeofstrainrates[j].internationaljournalofimpactengineering,2008,35(8):811-819.
|
[14] | matsunagat,takahashik,kameyamat,etal.relaxationmechanismsatgrainboundariesforambient-temperaturecreepofhcpmetals[j].materialsscienceandengineeringa,2009,510:356-358.
|
[15] | tanakah,yamadat,satoe,etal.distinguishingtheambienttemperaturecreepregioninadeformationmechanismmapofannealedcp-ti[j].scriptamater,2006,54:121-124.
|
[16] | pengj,zhoucy,daiq,etal.thetemperatureandstressdependentprimarycreepofcp-tiatlowandintermediatetemperature[j].materialsscienceandengineeringa,2014,611:123-135.
|
[17] | pengj,zhoucy,daiq,etal.fatigueandratchetingbehaviorsofcp-tiatroomtemperature[j].materialsscienceandengineeringa,2014,590:329-337.
|
[18] | samantarayd,mandals,bhaduriak,etal.anoverviewonconstitutivemodellingtopredictelevatedtemperatureflowbehaviouroffastreactorstructuralmaterials[j].transactionsoftheindianinstituteofmetals,2010,63(6):823-831.
|
[19] | samantarayd,mandals,bhaduriak.acomparativestudyonjohnsoncook,modifiedzerilli-armstrongandarrhenius-typeconstitutivemodelstopredictelevatedtemperatureflowbehaviourinmodified9cr-1mosteel[j].computationalmaterialsscience,2009,47(2):568-576.
|
[20] | linyc,chenxm.acriticalreviewofexperimentalresultsandconstitutivedescriptionsformetalsandalloysinhotworking[j].materials&design,2011,32(4):1733-1759.
|
[21] | lim,chengs,xionga,etal.acquiringanovelconstitutiveequationofatc6alloyathigh-temperaturedeformation[j].journalofmaterialsengineeringandperformance,2005,14(2):263-266.
|
[22] | songsx,hortonja,kimnj,etal.deformationbehaviorofatwin-roll-castmg-6zn-0.5mn-0.3cu-0.02zralloyatintermediatetemperatures[j].scriptamaterialia,2007,56(5):393-395.
|
[23] | huangyc,linyc,dengj.hottensiledeformationbehaviorsandconstitutivemodelof42crmosteel[j].materials&design,2014,53:344-356.
|
[24] | linyc,chenms,zhangj.modelingofflowstressof42crmosteelunderhotcompression[j].materialsscienceandengineeringa,2009,499(1):88-92.
|
[25] | houqy,wangjt.amodifiedjohnson-cookconstitutivemodelformg-gd-yalloyextendedtoawiderangeoftemperatures[j].computationalmaterialsscience,2010,50(1):147-152.
|
[26] | wangy,zhouy,xiay.aconstitutivedescriptionoftensilebehaviorforbrassoverawiderangeofstrainrates[j].materialsscienceandengineeringa,2004,372(1):186-190.
|
[27] | vuralm,ravichandrang,ritteld.largestrainmechanicalbehaviorof1018cold-rolledsteeloverawiderangeofstrainrates[j].metallurgicalandmaterialstransactionsa,2003,34(12):2873-2885.
|
[28] | samantarayd,mandals,bhaduriak,etal.analysisandmathematicalmodellingofelevatedtemperatureflowbehaviourofausteniticstainlesssteels[j].materialsscienceandengineeringa,2011,528(4):1937-1943.
|
[29] | samantarayd,mandals,borahu,etal.athermo-viscoplasticconstitutivemodeltopredictelevated-temperatureflowbehaviourinatitanium-modifiedausteniticstainlesssteel[j].materialsscienceandengineering:a,2009,526(1):1-6.
|
[30] |
|
[31] | longfw,jiangqw,xiaol,etal.compressivedeformationbehaviorsofcoarse-andultrafine-grainedpuretitaniumatdifferenttemperatures:acomparativestudy[j].materialstransactions,2011,52(8):1617-1622.
|
[32] | neerajt,houdh,daehngs,etal.phenomenologicalandmicrostructuralanalysisofroomtemperaturecreepintitaniumalloys[j].actamaterialia,2000,48(6):1225-1238.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|