全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人血纤肽片段分子在高分子材料表面吸附行为的分子模拟研究(英文)

Keywords: 抗凝血聚合物材料, 人血纤肽片段分子, 物理吸附, 分子模拟
anticoagulative polymer material
, fibrinopeptide segment, physical adsorption, molecular simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

吸附是生物材料与血液接触后最先发生的重要现象,是研究抗凝血材料的重要环节. 本文以在凝血过程中起着重要作用的人血纤肽片段分子-Asp-Ser-Glu-Asp-Glu-(HFG)为研究对象,采用Materials Studio4.4软件包,在真空和水溶液环境中,我们分析了HFG分子在聚合物表面上的最短距离、吸附能和氢键作用,同时也得到了HFG分子不同的构型变化. 分析结果显示:亲水性表面更有利于吸附的进行; 随着疏水性的增强,吸附能逐渐减小,预示着疏水性聚合物材料有利于抗凝血性能的提高; 水介作用导致纤维蛋白原在表面上的排斥力增大,对提高材料的抗凝血性能有积极作用.
Since the adsorption behaviors of the peptides at material surfaces play an important role in many research fields and simulation studies can provide deep insights into more interaction details of the adsorption behaviors. A molecular simulation is performed using Materials Studio 4.4(MS 4.4)software package to investigate the physical adsorption behavior of the fibrinopeptide segment(HFG)separated from fibrinopeptide,which is the most important protein in the processes of hemeostasis and thrombosis,at three different kinds of polymeric biomaterials― polytetrafluoroethylene(PTFE),polyvinyl chloride(PVC),and Silicone Rubber(SR). The results suggest that the adsorption of HFG is weaker and weaker with the hydrophobicity increasing of the materials surfaces. The hydrophobic PTFE polymer materials show the best behavior to prevent the adsorption while the significant adsorption of HFG on the Silicon Rubber surface occur. Moreover,water also plays a promoting role to the interaction properties between the HFG and the polymer materials. The existence of water is strongly tend to take the peptide molecule away form the adsorption surface

References

[1]  peppasna,langerr.newchallengesinbiomaterials[j].science,1994,263:1715-1720.
[2]  dobretsovs,dahmshu,qianpy.inhibitionofbiofoulingbymarinemicroorganismsandtheirmetabolites[j].biofouling,2006,22:43-54.
[3]  schmidtdl,bradyrf,lamk.contactanglehysteresis,adhesion,andmarinebiofouling[j].langmuir,2004,20:2830-2836.
[4]  ostunie,chapmanrg,holmlinre.asurveyofstructure-propertyrelationshipsofsurfacesthatresisttheadsorptionofproteins[j].langmuir,2001,17:5605-5620.
[5]  halterp,yamamotorj.newchallengesinbiomaterials[j].biomaterappl,1988,2:317-327.
[6]  ratnerbd,hoffmanas,schoenfj.biomaterialsscience:anintroductiontomaterialsinmedicine[m].2rded.sandiego:elsevier,2004.
[7]  yasudat,okunot,yasudah.contactangleofwateronpolymersurfaces[j].langmuir,1994,10:2435-2439.
[8]  chapmanrg,ostunie,liny.preparationofmixedself-assembledmono-layers(sams)thatresistadsorptionofproteinsusingthereactionofamineswithasamthatpresentsinterchaincarboxylicanhydridegroups[j].langmuir,2000,16:6927-6936.
[9]  ulmana.anintroductiontoultrathinorganicthinfilms:fromlangmuirblodgetttoself-assembly[m].sandiego:academicpress,1991.
[10]  cˇernyv.thermodynamicalapproachtothetravelingsalesmanproblem:anefficientsimulationalgorithm[j].joptimtheoryappl,1985,45:41-51.
[11]  kirkpatricks,gelattcd,vecchimp.optimizationbysimulatedannealing[j].science,1983,220:671-680.
[12]  metropolisn,rosenbluthaw,rosenbluthmn.equationofstatecalculationsbyfastcomputingmachines[j].jchemphys,1953,21:1087-1093.
[13]  aristildel,marichalc,miehe-brendlej.interactionsofoxytetracyclinewithasmectiteclay:aspectroscopicstudywithmolecularsimulations[j].environscitechnol,2010,44:7839-7845.
[14]  xiehg,lixx,lvgj.effectofsurfacewettabilityandchargeonproteinadsorptionontoimplantablealginate-chitosan-alginatemicrocapsulesurfaces[j].jbiomedmaterresa,2010,92:1357-1365.
[15]  courtneyjm,forbescd.thrombosisonforeignsurfaces[j].brmedbull,1994,50:966-981.
[16]  le-clechp,chenv,fanetag.foulinginmembranebioreactorsusedinwastewatertreatment[j].jmembrsci,2006,284:17-53.
[17]  maoc,zhuap,qiuyz.introductionofo-butyrylchitosanwithaphotosensitivehetero-bifunctionalcrosslinkingreagenttosiliconerubberfilmbyradiationgraftinganditsbloodcompatibility[j].colloidssurfb,2003,30:299-306.
[18]  maoc,zhaowb,zhuap.aphotochemicalmethodforthesurfacemodificationofpoly(vinylchloride)witho-butyrylchitosantoimprovebloodcompatibility[j].processbiochem,2004,39:1151-1157.
[19]  skarjaga,brashjl,bishopp.proteinandplateletinteractionswiththermallydenaturedfibrinogenandcross-linkedfibrincoatedsurfaces[j].biomaterials,1998,19:2129-2138.
[20]  lindonjn,mcmanamag,kushnerl.doestheconformationofadsorbedfibrinogendictateplateletinteractionswithartificialsurfaces?[j].blood,1986,68:355-362.
[21]  cacciafestap,humphrisadl,jandtkd.humanplasmafibrinogenadsorptiononultraflattitaniumoxidesurfacesstudiedwithatomicforcemicroscopy[j].langmuir,2000,16:775-816.
[22]  fengl,lis,liy.super-hydrophobicsurfaces:fromnaturaltoartificial[j].advmater,2002,14:1857-1860.
[23]  wertzcf,santoremm.fibrinogenadsorptiononhydrophilicandhydrophobicsurfaces:geometricalandenergeticaspectsofinterfacialrelaxations[j].langmuir,2002,18:706-715.
[24]  steinerg,tuncs,maitzm.conformationalchangesduringproteinadsorption.ft-irspectroscopicimagingofadsorbedfibrinogenlayers[j].analchem,2007,79:1311-1316.
[25]  jamadagnisn,godawatr,gardes.howsurfacewettabilityaffectsthebinding,folding,anddynamicsofhydrophobicpolymersatinterfaces[j].langmuir,2009,25:13092-13099.
[26]  liy,chenx,gun.computationalinvestigationofinteractionbetweennanoparticlesandmembranes:hydrophobic/hydrophiliceffect[j].jphyschemb,2008,112:16647-16653.
[27]  materialsstudiov.4.4.materialsstudiov.4.4[m].sandiego:accelrysinc.,2007.
[28]  sunh.compass:anabinitioforce-fieldoptimizedforcondensed-phaseapplications-overviewwithdetailsonalkaneandbenzenecompounds[j].jphyschemb,1998,102:7338-7364.
[29]  senaratnew,andruzzil,oberck.self-assembledmonolayersandpolymerbrushesinbiotechnology:currentapplicationsandfutureperspectives[j].biomacromolecules,2005,6:2427-2448.
[30]  hey,howerj,chens.molecularsimulationstudiesofproteininteractionswithzwitterionicphosphorylcholineself-assembledmonolayersinthepresenceofwater[j].langmuir,2008,24:10358-10364.
[31]  khaledkf.molecularmodelingandelectrochemicalinvestigationsofthecorrosioninhibitionofnickelusingsomethiosemicarbazonederivatives[j].japplelectrochem,2011,41:423-433.
[32]  khaledkf.experimental,densityfunctiontheorycalculationsandmoleculardynamicssimulationstoinvestigatetheadsorptionofsomethioureaderivativesonironsurfaceinnitricacidsolutions[j].applsurfsci,2010,256:6753-6763.
[33]  khaledkf.electrochemicalbehaviorofnickelinnitricacidanditscorrosioninhibitionusingsomethiosemicarbazonederivatives[j].electrochimacta,2010,55:5375-5383.
[34]  chunsrivirots,troutbl.freeenergyofbindingofasmallmoleculetoanamorphouspolymerinasolvent[j].langmuir,2011,27:6910-6919.
[35]  kasemob.biologicalsurfacescience[j].surfsci,2002,500:656-677.
[36]  voglerea.structureandreactivityofwateratbiomaterialsurfaces[j].advcolloidinterfacesci,1998,74:69-117.
[37]  tanakam;mochizukia.effectofwaterstructureonbloodcompatibility-thermalanalysisofwaterinpoly(meth)acrylate[j].jbiomedmaterresa,2003,68a:684-695.
[38]  wuc,chenm,guoc,peptide-tio2interactioninaqueoussolution:conformationaldynamicsofrgdusingdifferentwatermodels[j].jphyschemb,2010,114:4692-4701.
[39]  bakeren,hubbardre.hydrogenbondinginglobularproteins[j].progbiophysmolbiol,1984,44:97-179.
[40]  sigalgb,mrksichm,whitesidesgm.effectofsurfacewettabilityontheadsorptionofproteinsanddetergents[j].jamchemsoc,1998,120:3464-3473.
[41]  gessnera,lieskea,paulkebr.influenceofsurfacechargedensityonproteinadsorptiononpolymericnanoparticles:analysisbytwo-dimensionalelectrophoresis[j].eurjpharmbiopharm,2002,54:165-170.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133