全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pd纳米粒子点阵的电子输运特征及其与纳米粒子覆盖率的关系

Keywords: 纳米粒子点阵, 覆盖率, 电子输运特性, 变程跳跃(VRH), 隧道穿透
nanoparticle arrays
, coverage, quantum transport properties, variable range hopping(VRH), thermally activated tunneling

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了Pd纳米粒子点阵在不同温度下的电子输运特性. 对于覆盖率达到渗流阈值附近的纳米粒子薄膜,其电导具有显著的量子输运的特征. 随着温度的降低,I-V特征曲线表现出越来越明显的非线性,满足Middleton-Wingreen(MW)模型所描述的标度律. 处于量子传导态的Pd纳米粒子阵列在低温下以变程跳跃(VRH)为主要输运方式,而在高温下则是以热激活隧穿为主要输运形式.
The electron transport properties of Pd nanoparticle arrays at different temperature is investigated. The coverage of the nanoparticles is controlled to approach the percolation threshold,the conductance of the nanoparticle films show obviously quantum transport behaviors. The I-V curves of the nanoparticle arrays become more and more nonlinear with the decrease of the temperature,and they can be fitted with the Middleton-Wingreen(MW)scaling model. For the nanoparticle arrays under quantum conducting state,variable range hopping(VRH)is the main electron transport mechanism at low temperature,while at high temperature,thermally activated tunneling become the dominant transport mechanism

References

[1]  kahlm,vogese,kostrewas,etal.periodicallystructuredmetallicsubstratesforsers[j].sensactuators:b,1998,51(1/2/3):285-291.
[2]  freemanrg,grabarkc,allisonkj,etal.self-assembledmetalcolloidmonolayers:anapproachtoserssubstrates[j].science,1995,267(5204):1629-1632.
[3]  suvakovm,tadicb.modelingcollectivechargetransportinnanoparticleassemblies[j].jphys-condensmat,2010,22(16):123-201.
[4]  middletonaa,wingreenns.collectivetransportinarraysofsmallmetallicdots[j].physrevlett,1993,71(19):3198-3201.
[5]  simmonsjg.generalizedformulafortheelectrictunneleffectbetweensimilarelectrodesseparatedbyathininsulatingfilm[j].japplphys,1963,34(6):1793-1803.
[6]  neugebauerca,webbmb.electricalconductionmechanisminultrathin,evaporatedmetalfilms[j].japplphys,1962,33(1):74-81.
[7]  mottnf.electronsindisorderedstructures[j].advphys,1967,16(61):49-144.
[8]  mottnf,davisea.conductioninnon-crystallinesystems.ⅱ.metal-insulatortransitioninarandomarrayofcentres[j].philosophicalmagazine,1968,17(150):1269-1284.
[9]  greshnykhd,fromsdorfa,wellerh,etal.ontheelectricconductivityofhighlyorderedmonolayersofmonodispersemetalnanoparticles[j].nanolett,2009,9(1):473-478.
[10]  efrosal,shklovskiibi.coulombgapandlow-temperatureconductivityofdisorderedsystems[j].jphyscsolidstate,1975,8(4):l49-l51.
[11]  knollw.interfacesandthinfilmsasseenbyboundelectromagneticwaves[j].annurevphyschem,1998,49:569-638.
[12]  dirixy,bastiaansenc,caseriw,etal.orientedpearl-necklacearraysofmetallicnanoparticlesinpolymers:anewroutetowardpolarization-dependentcolorfilters[j].advmater,1999,11(3):223-227.
[13]  maiersa,brongersmaml,kikpg,etal.plasmonics―aroutetonanoscaleopticaldevices[j].advmater,2001,13(19):1501-1505.
[14]  storhoffjj,elghanianr,mucicrc,etal.one-potcolorimetricdifferentiationofpolynucleotideswithsinglebaseimperfectionsusinggoldnanoparticleprobes[j].jamchemsoc,1998,120(9):1959-1964.
[15]  haesaj,vanduynerp.ananoscaleopticalbiosensor:sensitivityandselectivityofanapproachbasedonthelocalizedsurfaceplasmonresonancespectroscopyoftriangularsilvernanoparticles[j].jamchemsoc,2002,124(35):10596-10604.
[16]  caoywc,jinrc,mirkinca.nanoparticleswithramanspectroscopicfingerprintsfordnaandrnadetection[j].science,2002,297(5586):1536-1540.
[17]  xieb,liull,pengx,etal.optimizinghydrogensensingbehaviorbycontrollingthecoverageinpdnanoparticlefilms[j].jphyschem:c,2011,115(32):16161-16166.
[18]  helb,chenx,muyw,etal.two-dimensionalgradientagnanoparticleassemblies:multiscalefabricationandsersapplications[j].nanotechnology,2010,21(49):495-601.
[19]  beverlykc,sampaiojf,heathjr.effectsofsizedispersiondisorderonthechargetransportinself-assembled2-dagnanoparticlearrays[j].jphyschemb,2002,106(9):2131-2135.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133