全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类seirs模型稳定性分析(英文)

, PP. 21-30

Keywords: seirs模型,非线性发生率,稳定性,垂直传播,时滞

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了一个seirs流行病模型,考虑更一般形式的非线性发生率.对恢复类中有时滞和没有时滞的模型进行了比较.结果显示,带有时滞的模型的动力学行为与不带时滞的模型的动力学行为是不同的.对于不带时滞的模型,如果基本再生数小于1,无病平衡点(dfe)是全局渐近稳定的.当基本再生数大于1时,不论免疫期的长短系统都存在唯一的地方病平衡点,并且在一定的条件下是局部渐近稳定的.对于带有时滞的模型,dfe的稳定性依赖于基本再生数和时滞.而且,唯一的地方病平衡点的稳定性也依赖于时滞.另外,通过数值模拟显示,当时滞在一定的范围内时,周期解有可能会出现.

References

[1]  busenbergsn,cookekl.verticaltransmitteddiseases:modelsanddynamics.biomathematics[m].berlin:springer-verlag,1993:23-259.
[2]  bellenirk,dresserp.contagiousandnon-contagiousinfectiousdiseasessource-book.healthscienceseries8[m].detroit:omnigraphicsinc.,1996:1-566.
[3]  hethcotehw,vandendriesschep.someepidemiologicalmodelswithnorlearincidence[j].jmathbiol,1991,29(3):271-287.
[4]  ligh,jinz.globalstabilityofaseirepedemicmodelwithinfectiousforceinlatent,infectedandimmuneperiod[j].chaos,solitonsfractals,2005,25(5):1177-1184.
[5]  wangwd.globalbehaviorofanseirsepidemicmodelwithtimedelays[j].applmathletters,2002,15(4):423-428.
[6]  zhangtl,tengzd.globalasymptoticstabilityofadelayedseirsepidemicmodelwithsaturationincidence[j].chaos,solitonsfractals,2008,37(5):1456-1468.
[7]  greenhalghd.hopfbifurcationinepidemicmodelswithalatentperiodandnon-permanentimmunity[j].mathcomputmodel,1997,25(1):85-93.
[8]  limy,muldoweneyjs.globalstabilityforseirmodelinepidemiology[j].mathbiosci,1995,125(2):155-167.
[9]  qilx,cuija.thestabilityofanseirsmodelwithnonlinearincidence,verticaltransmissionandtimedelay[j].applmathcomput,2013,221:360-366.
[10]  limy,muldoweneyjs,wanglc,etal.globaldynamicsofanseirepi-demicmodelwithavaryingtotalpopulationsize[j].mathbiosci,1999,160:191-213.
[11]  zhangj,maze.globalstabilityofseirmodelwithsaturatingcontactrate[j].mathbiosci,2003,185(1):15-32.
[12]  liuwm,levinsa,iwasay.influenceofnonlinearincidenceratesuponthebehaviorofsirsepidemiologicalmodels[j].jmathbiol,1986,23(2):187-204.
[13]  busenbergsn,cookekl,pozioma.analysisofamodelofaverticallytransmitteddisease[j].jmathbiol,1983,17(3):305-329.
[14]  cookekl,busenbergsn.verticaltransmitteddiseases[m]//lakshmicantham.nonlinearphenomenainmathematicalsciences.newyork:academicpress,1982:189-197.
[15]  finepm.vectorsandverticaltransmission,anepidemiologicalperspective[j].annalnyacadsci,1975,266:173-194.
[16]  michaely,smithh,wangl.globaldynamicsofanseirepidemicmodelwithverticaltransmission[j].siamjapplmath,2001,62:58-69.
[17]  cuija,sunyh,zhuhp.theimpactofmediaonthecontrolofinfectiousdiseases[j].jdynamdifferentialequations,2008,20(1):31-53.
[18]  cuija,muxx,wanh.saturationcoveryleadstomultipleendemicequilibriaandbackwardbifurcation[j].jtheorbiol,2008,254(2):275-283.
[19]  cuija,taox,zhuhp.ansisinfectionmodelincorporatingmediacoverage[j].rockymountainjmath,2008,38(5):1323-1334.
[20]  lixz,zhoull.globalstabilityofanseirepidemicmodelwithverticaltransmissionandsaturatingcontactrate[j].chaos,solitonsfractals,2009,40(2):874-884.
[21]  suncj,linyp,tangsp.globalstabilityforanspecialseirepidemicmodelwithnonlinearincidencerates[j].chaos,solitonsfractals,2007,33(1):290-297.
[22]  limy,smithhl,wanglc.globaldynamicsofanseirepidemicmodelwithverticaltransmission[j].siamjapplmath,2001,62(1):58-69.
[23]  grenhalghd.someresultsforanseirepidemicmodelwithdensitydependenceinthedeathrate[j].imajmathapplmedbiol,1992,9(2):67-106.
[24]  busenbergsn,cookekl.thepopulationdynamicsoftwoverticallytransmittedinfections[j].theorpopulbiol,1988,33(2):181-198.
[25]  cookek,vandendriesschep.analysisofanseirsepidemicmodelwithtwodelays[j].jmathbiol,1990,35(2):240-258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133