全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部和全局信息的正则化迭代聚类

Keywords: 凸形,谱聚类,局部正则化,全局正则化,迭代

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚类是一种高效的数据分析方法,经典的k-means算法只适用于类簇为凸形的数据集,谱聚类算法虽然避免了k-means的一些缺点,但相似度中的参数设置问题以及较高的计算、存储复杂度对聚类有所限制.基于局部和全局信息的正则化迭代聚类,先取部分数据作为一个整体聚类,然后逐渐加入少量数据进行迭代求解.该方法继承传统谱聚类的优点,充分利用局部正则化和全局正则化信息,通过迭代方式求解使较大规模数据聚类成为可能.通过实验对比结果显示,该算法有良好的聚类效果.

References

[1]  dudaro,hartpe,storkdg.patternclassication[m].usa:johnwileyandsons,2001.
[2]  hej,lanm,tancl,etal.initializationofclusterrenementalgorithms:areviewandcomparativestudy[c]//proceedingsofieeeinternationaljointconferenceonneuralnetworks.unitedstates:ieeecomputersociety,2004:297-302.
[3]  dingc,hex,zhah,etal.amin-maxcutalgorithmforgraphpartitioninganddataclustering[c]//proceedingsofthe1stinternationalconferenceondatamining(icdm).california,usa:ieeecomputersociety,2001:107-114.
[4]  belkinm,niyogip.laplacianeigenmapsfordimensionalityreductionanddatarepresentation[j].neuralcomputation,2003,15(6):1373-1396.
[5]  zhoud,bousqueto,laltn,etal.learningwithlocalandglobalconsistency[c]//advancesinneuralinformationprocessingsystems.cambrige:mitpress,2003:321-328.
[6]  yusx,shij.multiclassspectralclustering[c]//proceedingsoftheinternationalconferenceoncomputervision.usa:ieee,2003:313-319.
[7]  vapnikvn.thenatureofstatisticallearningtheory[m].berlin:springer-verlag,1995.
[8]  belkinm,niyogip.semi-supervisedlearningonriemannianmanifolds[j].machinelearning,2004:209-239.
[9]  zhux,laffertyj,ghahramaniz.semi-supervisedlearning:fromgaussianfieldstogaussianprocess[r]//computersciencetechnicalreport.usa:carnegiemellonuniversity,2003.
[10]  ngay,jordanmi,weissy.onspectralclusteringanalysisandanalgorithm[c]//proceedingsofadvancesinneuralinformationprocessingsystems.cambridge,ma:mitpress,2001,14:849-856.
[11]  jaina,dubesr.algorithmsforclusteringdata[m].nj:prentice-hall,1988.
[12]  hanj,kamberm.datamining:conceptsandtechniques[m].sanfrancisco:morgankaufmannpublishers,2001.
[13]  zhah,hex,dingc,etal.spectralrelaxationfork-meansclustering[c]//dietterichtg,beckers,ghahramaniz.advancesinneuralinformationprocessingsystems.usa:themitpress,2001:1057-1064.
[14]  shij,malikj.normalizedcutsandimagesegmentation[j].ieeetransonpatternanalysisandmachineintelligence,2000,22(8):888-905.
[15]  chanpk,schlagdf,zienjy.spectralk-wayratio-cutpartitioningandclustering[j].ieeetranscomputer-aideddesign,1994,13(9):1088-1096.
[16]  bottoul,vapnikv.locallearningalgorithms[j].neuralcomputation,1992,4(6):888-900.
[17]  wum,sch¨olkopfb.alocallearningapproachforclustering[c]//advancesinneuralinformationprocessingsystems.germany:nips,2006:1529-1536.
[18]  golubgh,vanloancf.matrixcomputations[c].baltimore,md,usa:johnshopkinsuniversitypress,1996:374-426.
[19]  heinm,audibertjy,luxburguvon.fromgraphstomanifolds-weakandstrongpointwiseconsistencyofgraphlaplacians[c]//proceedingsofthe18thannualconferenceonlearningtheory(colt).bertinoro,italy:springer,2005:470-485.
[20]  wangf,zhangc,lit.clusteringwithlocalandglobalregularization[j].ieeetransactionsonknowledgeanddataengineering,2009,21(12):1665-1678.
[21]  jiaol,bol,wangl.fastsparseapproximationforleastsquaressupportvectormachine[j].ieeetransactionsonneuralnetworks,2007,18(3):685-697.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133