全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数据依赖核支持向量机回归的风速预测模型

Keywords: 风速预测,数据依赖核,支持向量机回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对风速随机性大、影响因素多、预测准确度不高的情况,基于支持向量机与信息几何的统计学关联性,从信息几何学角度分析核函数的几何结构,构造数据依赖核函数,并与支持向量机回归相结合,形成数据依赖核支持向量机回归(datadependentkernel-svr,ddk-svr)方法.将该方法用于风速预测中,建立ddk-svr风速预测模型,并将预测结果与传统支持向量机、神经网络方法进行对比.结果表明,ddk-svr方法具有更高的预测精度.

References

[1]  范伟,赵书强,胡炳杰.应用statcom提高风电场的电压稳定性[j].电网与清洁能源,2009,25(4):40-44.
[2]  firatu,enginsn,saraclarm,etal.windspeedforecastingbasedonsecondorderblindidentificationandautoregressivemodel[c]//internationalconferenceonmachinelearningandapplications(icmla).washington,dc,usa,2010:686-691.
[3]  babazadehh,gaowenzhong,lincheng,etal.anhouraheadwindspeedpredictionbykalmanfilter[c]//powerelectronicsandmachinesinwindapplications(pemwa).denver,usa,2012:1-6.
[4]  huangchiyo,liuyuwei,tweichang,etal.shorttermwindspeedpredictionsbyusingthegreypredictionmodelbasedforecastmethod[c]//greentechnologiesconference(ieee-green).batonrouge,louisiana,2011:1-5.
[5]  ghanbarzadeha,noghrehabadiar,behrangma,etal.windspeedpredictionbasedonsimplemeteorologicaldatausingartificialneuralnetwork[c]//ieeeinternationalconferenceonindustrialinformatics.cardiff,wales,2009:664-667.
[6]  adammirecki,xavierroboam,fredericrichardean.architecturecomplexityandenergyefficiencyofsmallwindturbines[j].ieeetransactionsonindustrialelectronics,2007,54(1):660-670.
[7]  vapnikvn.thenatureofstatisticallearningtheory[m].newyork:springer-verlag,1995.
[8]  liuh,yaonanwang,xiaofenlu.amethodtochoosekernelfunctionanditsparametersforsupportvectormachines[c]//machinelearningandcybernetics.guangzhou,china,2005:4277-4280.
[9]  ming-yuancho,tsair-fwulee,shih-weikau,etal.faultdiagnosisofpowertransformersusingsvm/annwithclonalselectionalgorithmforfeaturesandkernelparametersselection[c]//innovativecomputing,informationandcontrol.beijing,china,2006:26-30.
[10]  baijing,guoyueling.speechrecognitionmethodbasedonlineardescendinginertiaweightpsoalgorithmoptimizingsvmkernelparameters[j].naturalcomputation,2009:565-568.
[11]  williammboothby.anintroductiontodifferentiablemanifoldsandriemanniangeometry,revisedsecondedition[m].singapore:elsevier,2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133