OALib Journal期刊
ISSN: 2333-9721
费用:99美元
基于自适应ε占优的多目标差分演化算法
Keywords: 多目标优化 , Pareto最优解 , 差分演化 , 正交设计 , 自适应ε占优multi-objective optimization , Pareto optimal solution , differential evolution , orthogonal design , adaptive ε-dominance
Abstract:
求解多目标优化问题最重要的目的就是获得尽可能逼近真实最优解和分布性良好的非支配解集. 为此,本文提出了一种基于自适应ε占优的正交多目标差分演化算法,该算法具有如下特征:1.利用正交设计和连续空间的量化来产生具有良好分布性的初始演化种群,不仅能降低算法的时间复杂度,也能使演化充分利用种群中的个体; 2.采用在线Archive种群来保存算法求得的非支配解,并用自适应的ε占优更新Archive种群,以自适应的方式维持种群的多样性、分布性. 最后通过5个标准测试函数对算法的有效性进行了测试,并与其他的一些多目标优化算法进行了对比,实验结果显示,算法能够很好地逼近Pareto前沿,并具有良好的分布性.The purpose to solve multi-objective optimization is to get solutions closing to the true Pareto front as much as possible and having good diversity. To meet these two demands,an algorithm is proposed in this paper,which has these characteristics:firstly,it adopts the orthogonal design method with quantization technology to generate initial population whose individuals are scattered uniformly over the target search space. So the algorithm can use them sufficiently in the subsequent iterations. What’s more,it is based on an adaptive ε concept to obtain a good distribution along the true Pareto-optimal solutions. Finally,experiments on five benchmark problems with different features have shown that this algorithm does well not only in distribution,but also in convergence when compared to other evolution algorithms
References
[1] 安伟刚.多目标优化方法研究及其工程应用[d].西安:西北工业大学航空学院,2005.
[2] schafferjd.multipleobjectiveoptimizationwithvectorevaluatedgeneticalgorithms[c]//proceedingsofthe1stinternationalconferenceongeneticalgorithms.usa:pittsburgh,1986(2):93-100.
[3] srinivasn,kalyanmoyd.multi-objectiveoptimizationusingthenondominatedsortingingeneticalgorithms[j].evolutioncomputation,1994,2(3):221-248.
[4] jeffreyh,nicholasn.multi-objectiveoptimizationusingthenichedparetogeneticalgorithm,technicalreport93005[r].urbana,illinois,usa:universityofillinoisaturbanachampaign,1993.
[5] joshuadk,davidwc.theparetoarchiveevolutionarystrategy:anewbaselinealgorithmformultiobjectiveoptimization[c]//proceedingsofthe1999congressonevolutionarycomputation.washingtondc,us:ieeepress,1999:98-105.
[6] eckartz,lothart.anevolutionaryalgorithmformulti-objectiveoptimization:thestrengthparetoapproach,technicalreport43[r].zurich,switzerland:swissfederalinstituteofechnology.1998:411-436.
[7] kalyanmoyd,samira,amritp,etal.afastelitistnon-dominatesortinggeneticalgorithmformulti-objectiveoptimization:nsga-ii[j].transactionsonevolutionarycomputation,2002,6(2):182-197.
[8] zitzlere,laumannsm,thielel.spea2:improvingthestrengthparetoevolutionaryalgorithm,technicalreporttik-report103[r].swiss:swissfederalinstituteoftechnologyzurich(eth),2001.
[9] 王宇平,焦永昌,张福顺.解多目标优化的均匀正交遗传算法[j].系统工程学报,2003,13:481-486.
[10] shic,liqy,shizz.aquickmulti-objectiveevolutionaryalgorithmbasedondominationtree[j].journalsoftware,2007,18(3):505-516.
[11] gongw,caiz,lingc.ode:afastandrobustdifferentialevolutionbasedonorthogonal[c]//lnai4304:procofadvancesinartificialintelligence.berlin:springer,2006:709-718.
[12] 罗辞勇,陈民铀,张聪誉.采用循环拥挤排序策略的改进nsga-ii算法[j].控制与决策,2010,25(2):227-231.
[13] 贺群,程格,安军辉,等.基于pareto的多目标克隆进化算法[j].计算机科学,2012,39(6a):489-492.
[14] 杨尚军,王社伟,陶军,等.基于混合细菌觅食算法的多目标优化方法[j].计算机仿真,2012,29(6):218-222.
[15] robi�dcˇ�t,filipi�dcˇ�b.demo:differentialevolutionformultiobjectiveoptimization[c]//lncs3410:procofemo’05.berlin:springer,2005:520-533.
[16] debk,mohanm,mishras.evaluatingtheε-dominationbasedmulti-objectiveevolutionaryalgorithmforaquickcomputationofpareto-optimalsolutions[j].evolutionarycomputation,2005,13(4):501-525.
[17] zitzlere,thielel,laumannsm,etal.performanceassessmentofmulti-objectiveoptimizer:ananalysisandreview[j].ieeetransonevolutionarycomputation,2003,7(2):117-132.
[18] tadahikom,hisaoi.moga:multi-objectivegeneticalgorithms[c]//proceedingsofthe2ndieeeinternationalconferenceonevolutionarycomputing.perth,australia:ieeepress,1995(3):289-294.
[19] 曾三友,魏巍,康立山.基于正交设计的多目标演化算法[j].计算机学报,2005,28(7):1153-1162.
[20] 关世华,寇纪淞,李敏强.基于ε-约束方法的lagrangian多目标协同进化算法[j].系统工程与电子技术,2002,24(9):33-37.
[21] 公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[j].软件学报,2009,2(20):271-289.
[22] 龚文引,蔡之华.基于ε占优的正交多目标差分演化算法研究[j].计算机研究与发展,2009(4):655-666.
[23] leungy,wangy.anorthogonalgeneticalgorithmwithquantizationforglobalnumericaloptimization[j].ieeetransactiononevolutionarycomputation,2001,5(1):41-53.
[24] gongwy,caizh.animprovedmulti-objectivedifferentialevolutionbasedonparetoadaptiveε-dominanceandorthogonaldesign[j].europeanjournalofoperationalresearch,2009,198:576-601.
[25] 陈民铀,张聪誉,罗辞勇.自适应进化多目标粒子群算法[j].控制与决策,2009,24(12):1851-1855.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133