全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

决策粗糙集的属性约简准则研究

Keywords: 属性约简, 代价, 决策粗糙集, 决策单调, 一般性准则
attribute reduction
, cost criterion, decision-theoretic rough set, decision-monotonicity, generality criterion

Full-Text   Cite this paper   Add to My Lib

Abstract:

属性约简是粗糙集理论研究的重要内容之一. 在传统Pawlak粗糙集模型中,随着属性数量的单调变化,下、上近似集也单调变化. 然而,在决策粗糙集模型中,随着属性的单调增加,下、上近似集有可能增加也有可能减少. 针对这一问题,从优化角度给出了决策单调准则、一般性准则和代价准则的适应性函数并通过遗传算法求得三种准则下的约简. 实验结果表明:决策单调准则约简获得了更多的正域规则; 一般性准则约简获取了最多的正域规则; 代价准则约简获得了最小的决策代价.
Attribute reduction is one of the important research issues in rough set theory. In classical Pawlak rough set,the lower and upper approximations are monotonic with respect to the set inclusion of attributes. However,in decision-theoretic rough set model,the lower and upper approximations may increase or decrease with respect to the increasing of attributes. To address this issue,from the viewpoint of optimization,fitness functions of the decision-monotonicity criterion,generality criterion and cost criterion have been proposed respectively. Genetic algorithm is also applied to compute reducts. The experimental results show that:the reducts based on decision-monotonicity criterion can generate more positive rules; the reducts based on generality criterion can generate most positive rules; the reducts based on cost criterion can obtain lowest decision costs

References

[1]  yaoyy.thesuperiorityofthree-waydecisionsinprobabilisticroughsetmodels[j].informationsciences,2011,181:1080-1096.
[2]  贾修一,商琳.一种求三支决策阈值的模拟退火算法[j].小型微型计算机系统,2013,34(11):2603-2606.
[3]  dengxf,yaoyy.decision-theoreticthree-wayapproximationsoffuzzysets[j].informationsciences,2014,279:702-715.
[4]  yaoyy,wongskm.adecisiontheoreticframeworkforapproximatingconcepts[j].internationaljournalofman-machinestudies,1992,37:793-809.
[5]  jiaxy,tangzm,liaowh,etal.onanoptimizationrepresentationofdecision-theoreticroughsetmodel[j].internationaljournalofapproximatereasoning,2014,55:156-166.
[6]  贾修一,李伟�,商琳,等.一种自适应求三枝决策中决策阈值的算法[j].电子学报,2011,39(11):2520-2525.
[7]  lihx,zhouxz,huangb,etal.cost-sensitivethree-waydecision:asequentialstrategy[c]//lingrasp,wolskim,cornelisc,etal.rskt2013.lncs,heidelberg:springer,2013,8171:325-337.
[8]  liangdc,liud,pedryczw,etal.triangularfuzzydecision-theoreticroughsets[j].internationaljournalofapproximatereasoning,2013,54(8):1087-1106.
[9]  liangdc,liud.systematicstudiesonthree-waydecisionswithinterval-valueddecision-theoreticroughsets[j].informationsciences,2014,276:186-203.
[10]  liud,litr,lihx.amultiple-categoryclassificationapproachwithdecision-theoreticroughsets[j].fundamentainformaticae,2012,115:173-188.
[11]  liud,litr,liangdc.incorporatinglogisticregressiontodecision-theoreticroughsetsforclassification[j].internationaljournalofapproximatereasoning,2014,55(1):197-210.
[12]  qianyh,zhangh,sangyl,etal.multigranulationdecision-theoreticroughsets[j].internationaljournalofapproximatereasoning,2013,55(1):225-237.
[13]  zhoub.multi-classdecision-theoreticroughsets[j].internationaljournalofapproximatereasoning,2013,55(1):211-224.
[14]  maxa,wanggy,yuh,etal.decisionregiondistributionpreservationreductionindecision-theoreticroughsetmodel[j].informationsciences,2014,278:614-640.
[15]  lihx,zhouxz,zhaojb,etal.non-monotonicattributereductionindecision-theoreticroughsets[j].fundamentainformaticae,2013,126(4):415-432.
[16]  jiaxy,liaowh,tangzm,etal.minimumcostattributereductionindecision-theoreticroughsetmodels[j].informationsciences,2013,219:151-167.
[17]  yaoyy,zhaoy.attributereductionindecision-theoreticroughsetmodels[j].informationsciences,2008,178:3356-3373.
[18]  zhaoy,wongsk,yaoyy.anoteonattributereductioninthedecision-theoreticroughsetmodel[c]//petersjf,skowrona,chancc,etal.trs�.lncs,heidelberg:springer,2011,6499:260-275.
[19]  鞠恒荣,马兴斌,杨习贝,等.不完备信息系统中测试代价敏感的可变精度分类粗糙集[j].智能系统学报,2014,9(2):219-223.
[20]  yangxb,qiys,songxn,etal.testcostsensitivemultigranulationroughset:modelandminimalcostselection[j].informationsciences,2013,250:184-199.
[21]  yangxb,yangjy.incompleteinformationsystemandroughsettheory:modelandattributereductions[m].beijing:sciencepress,andberlinheidelberg:springer,2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133