周期为?p??n+1?的?gf(q)?上广义分圆序列?的线性复杂度
DOI: 10.3969/j.jssn.1000-2006.2012.05.028, PP. 145-147
Keywords: 广义分圆序列,线性复杂度,本原单位根
Abstract:
主要研究周期为?p??n+1?的?q?元域上广义分圆序列的线性复杂度,即把二元域上edemskii的研究结果推广到一般?gf(q)?上。这里利用分圆数和部分指数和来给出具体的关于线性复杂度的计算公式。
References
[1] | irlandk,rosenm.aclassicalintroductiontomodernnumbertheory[m].2ndedition.berlin:springer?verlag,2003.
|
[2] | 冯克勤,刘凤梅.代数与通信[m].北京:高等教育出版社,2005.?
|
[3] | lidlr,niederreiterh.finitefields:encyclopediaofmathematicsanditsapplications[c]//computersandmathematicswithapplications.newyork:elseviersciencep ̄u ̄b ̄l ̄i ̄s ̄h ̄i ̄n ̄gc ̄o ̄m ̄p ̄a ̄n ̄y,1997.?
|
[4] | dingc.complexityofgeneralizedcyclo?tomicbinarysequenceoforder2[j].finitefieldsandtheirapplications,1997(3):159-174.?
|
[5] | edemskiiva.onthelinearcomplexityofbinarysequencesonthebasisofbiquadraticandsexticresidueclasses[j].discretemathappl,2010,20(1):75-84.?
|
[6] | edemskiiva.aboutcomputationofthelinearcomplexityofgeneralizedcyclotomicsequenceswithperiod?p??n+1?,toappeardes[j].springer:codescryptography,2011,61(3):251-260.?
|
[7] | dicksonle.cyclotomy,highercongruences,andwaring?sproblem[j].amerjmath,1935,57:391-424,463-473.?
|
[8] | hallm.combinatorialtheory[m].2ndedition.newyork:wlley,1975.?
|
[9] | 胡丽琴.高斯周期、分圆序列及码本[d].南京:南京航空航天大学,2012.?
|
Full-Text