全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于地理加权泊松模型的河南省火灾风险模拟

DOI: 10.3969/j.issn.1000-2006.2015.05.015, PP. 93-98

Keywords: 火险模拟,地理加权泊松模型,局部拟合,河南省

Full-Text   Cite this paper   Add to My Lib

Abstract:

火灾风险模拟是探究火灾风险机制和揭示影响火灾主要因素的重要途径。使用可解释火灾及其影响因素间局部变异关系的地理加权泊松模型为建模工具,选取坡度、人类活动可达性、太阳辐射、地表温度、植被状态等火环境因素,对河南省2002―2012年的火灾风险进行空间模拟,并分别从可靠性和区分能力两方面对模型进行检验。结果表明:①与广义泊松模型相比,地理加权泊松模型的模拟精度和模型性能均显著提高;②人类活动可达性对火灾的影响在河南省内未呈现显著空间变化,地形、太阳辐射、地表温度和植被状态对火灾影响在河南省内表现出显著空间变化,邻近居民区和远离主要道路的区域更易发生火灾;③火灾影响因素的估计系数图可用于防火管理。

References

[1]  张海军,戚鹏程.基于频率比和逻辑回归模型的东北地区火险制图研究[j].地理与地理信息科学,2012,28(5):35-38,42.zhanghj,qipc.mappingfireoccurrencesusceptibilityinnortheastchina:comparisonoffrequencyratioandbinarylogisticregression[j].geographyandgeo-informationscience,2012,28(5):35-38,42.
[2]  zhanghj,hanxy,dais.fireoccurrenceprobabilitymappingofnortheastchinawithbinarylogisticregressionmodel[j].ieeejournalofselectedtopicsinappliedearthobservationsandremotesensing,2013,6(1):121-127.
[3]  郭其乐,陈怀亮,邹春辉,等.河南省近年来遥感监测的森林火灾时空分布规律分析[j].气象与环境科学,2009,32(4):29-32.guoql,chenhl,zouch,etal.analysisofthelawsofspatialandtemporaldistributionofremotesensingmonitoringforestfiresofhenanprovinceinrecentyears[j].meteorologicalandenvironmentalsciences,2009,32(4):29-32.
[4]  景国勋,王卫敏,温宏民.基于bp神经网络的河南省火灾风险评价[j].中国安全科学学报,2007,17(8):16-19.jinggx,wangwm,wenhm.riskassessmentoffireaccidentsinhenanprovinceofchinabasedonbpneuralnetwork[j].chinasafetysciencejournal,2007,17(8):16-19.
[5]  boschettil,roydp,justiceco,etal.globalassessmentofthetemporalreportingaccuracyandprecisionofthemodisburnedareaproduct[j].internationaljournalofwildlandfire,2010,19(6):705-709.
[6]  ceccatop,gobronn,flasses,etal.designingaspectralindextoestimatevegetationwatercontentfromremotesensingdata:part1-theoreticalapproach[j].remotesensingofenvironment,2002,82(2):188-197.
[7]  wheelerdc.diagnostictoolsandaremedialmethodforcollinearityingeographicallyweightedregression[j].environmentandplanninga,2007,39(10):2464-2481.
[8]  jiangyy,zhuangql,mandallazd.modelinglargefirefrequencyandburnedareaincanadianterrestrialecosystemswithpoissonmodels[j].environmentalmodeling&assessment,2012,17(5):483-493.
[9]  hurvichcm,simonoffjs,tsaicl.smoothingparameterselectioninnonparametricregressionusinganimprovedakaikeinformationcriterion[j].journaloftheroyalstatisticalsociety.seriesb:statisticalmethodology,1998,60(2):271-293.
[10]  ardakanias,valadanzoejmj,mohammadzadeha,etal.spatialandtemporalanalysisoffiresdetectedbymodisdatainnortherniranfrom2001to2008[j].ieeejournalofselectedtopicsinappliedearthobservationsandremotesensing,2011,4(1):216-225.
[11]  王超,高红真,程顺,等.塞罕坝林区森林可燃物含水率及火险预报[j].林业科技开发,2009,33(3):59-62.wangc,gaohz,chengs.studyonwatercontentofforestfuelandforestfireriskpredictioninsaihanbaforestarea[j].chinaforestryscienceandtechnology,2009,33(3):59-62.
[12]  张海军,白景锋.空间抽样对东北地区逻辑火险建模的影响[j].实验室研究与探索,2014,33(5):20-25.zhanghj,baijf.influencesofdifferentspatialsamplingprogramsonlogisticfiredangermodeling―acasestudyinfornortheastchina[j].researchandexplorationinlaboratory,2014,33(5):20-25.
[13]  肖化顺,张贵,蔡学理.基于模糊数据挖掘技术的林火行为预测研究[j].南京林业大学学报:自然科学版,2006,30(4):97-100.xiaohs,zhangg,caixl.predictingforestfirebehaviorbasedonfuzzydataminingtechnique[j].journalofnanjingforestryuniversity:naturalsciencesedition,2006,30(4):97-100.
[14]  bisquertm,casellese,sánchezjm,etal.applicationofartificialneuralnetworksandlogisticregressiontothepredictionofforestfiredangeringaliciausingmodisdata[j].internationaljournalofwildlandfire,2012,21(8):1025-1029.
[15]  dlaminiwm.applicationofbayesiannetworksforfireriskmappingusinggisandremotesensingdata[j].geojournal,2011,76(3):283-296.
[16]  prestemonjp,chas-amilml,touzajm,etal.forecastingintentionalwildfiresusingtemporalandspatiotemporalautocorrelations[j].internationaljournalofwildlandfire,2012,21(6):743-754.
[17]  koutsiasn,martínez-fernándezj,allgöwerb.dofactorscausingwildfiresvaryinspace?evidencefromgeographicallyweightedregression[j].giscience&remotesensing,2010,47(2):221-240.
[18]  zhanghj,qipc,guogm.improvementoffiredangermodellingwithgeographicallyweightedlogisticmodel[j].internationaljournalofwildlandfire,2014,23(8):1130-1146.
[19]  nakayat,fotheringhamas,brunsdonc,etal.geographicallyweightedpoissonregressionfordiseaseassociationmapping[j].statisticsinmedicine,2005,24(17):2695-2717.
[20]  hadayeghiah,shalabyas,persaudbn,etal.developmentofplanningleveltransportationsafetytoolsusinggeographicallyweightedpoissonregression[j].accidentanalysisandprevention,2010,42(2):676-688.
[21]  krebsp,koutsiasn,conederam.modellingtheeco-culturalnicheofgiantchestnuttrees:newinsightsintolandusehistoryinsouthernswitzerlandthroughdistributionanalysisofalivingheritage[j].journalofhistoricalgeography,2012,38(4):372-386.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133