全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工林胡桃楸幼龄期与成熟期界定方法的比较

DOI: 10.3969/j.issn.1000-2006.2013.03.019, PP. 103-109

Keywords: 胡桃楸,成熟期,支持向量机,bp神经网络,主成分聚类,有序聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了确定人工林胡桃楸的成熟期,以其年轮间的径向解剖性质为研究对象,采用有序聚类最优分割法、主成分聚类法、bp神经网络和支持向量机(svm)4种分类方法分别进行界定。研究结果表明:可以采用主成分聚类、bp神经网络与支持向量机分类方法界定人工林胡桃楸的生长期,其分类结果与采用有序聚类最优分割法界定的年限差值为0~3a;人工林胡桃楸的过渡期与成熟期可以进行有效界定,但对幼龄期与过渡期的划分结果很难确定为一个精准的数值。通过比较分析,支持向量机为界定人工林胡桃楸幼龄期与成熟期的最佳方法。

References

[1]  joelwevans,johnfsenft,davidwgreen.juvenilewoodeffectinredalder:analysisofphysicalandmechanicaldatatodelineatejuvenileandmaturewoodzones[j].forestproductsjournal,2000,50(7/8):75-87.
[2]  jéromealteyrac,alaincloutier,zhangsy.characterizationofjuvenilewoodtomaturewoodtransitionageinblackspruce(piceamariana(mill.)b.s.p.)atdifferentstanddensitiesandsamplingheights[j].woodscienceandtechnology,2006,40(2):124-138.
[3]  rüdigermutz,edithguilley,udohsauter,etal.modelingjuvenile-maturewoodtransitioninscotspine(pinussylvestrisl.)usingnonlinearmixed-effectsmodels[j].annalsofforestscience,2004,61(8):831-841.
[4]  ferreiraal,severoetd,calonegofw.determinationoffiberlengthandjuvenileandmaturewoodzonesfromheveabrasiliensistreesgrowninbrazil[j].eurjwoodprod,2011,69(4):659-662.
[5]  ryoutatsuchiya.relationshipbetweentheradialvariationofraycharacteristicsandthestagesofradialstemincrementinzelkovaserrata[j].thejapanwoodresearchsociety,2010,56(6):495-501.
[6]  leventecsoka,jianjunzhu,katsuhikotakata.applicationofthefourieranalysistodeterminethedemarcationbetweenjuvenileandmaturewood[j].thejapanwoodresearchsociety,2005(51):309-311.
[7]  陈广胜.基于神经网络的人工林落叶松木材材质预测研究[d].哈尔滨:东北林业大学,2006.
[8]  史峰.王小川.郁磊.等.matlab神经网络30个案例分析[m].北京:北京航空航天大学出版社,2010.
[9]  zhangdy,sunlp,caoj.modelingoftemperature-humidityforwooddryingbasedontime-delayneuralnetwork[j].journalofforestryresearch,2006,17(2):141-144.
[10]  杨少春.木材表面颜色模式识别方法的研究[d].哈尔滨:东北林业大学,2008.yangsc.researchonpatternrecognitionofwoodsurfacecolor[d].harbin:northeastforestryuniversity,2008.
[11]  业宁,王厚立,徐兆军,等.基于支持向量机的木材缺陷识别[j].计算机应用与软件,2006,23(4):3-5.yen,wanghl,xuzj,etal.recognitionofwooddefectionbasedonsupportvectormachine[j].computerapplicationsandsoftware,2006,23(4):3-5.
[12]  ireneyh,guhenrikandersson,raúlvicen.automaticclassificationofwooddefectsusingsupportvectormachines[j].lecturenotesincomputerscience,2009,5337:356-367.
[13]  ireneyu-huagu,henrikandersson,raulvicen.wooddefectclassificationbasedonimageanalysisandsupportvectormachines[j].woodscienceandtechnology,2010,44(4):693-704.
[14]  陈立生.基于支持向量机的木材干燥预测控制技术[d].哈尔滨:东北林业大学,2011.chenls.timberdryingmodelpredictivecontroltechnologybasedonsupportvectormachine[d].harbin:doctorofnortheastforestryuniversity,2011.
[15]  李坚,郭明辉,赵西平.木材品质与营林环境[m].北京:科学出版社,2011.
[16]  jianjunzhu,naokitadooka,katsuhikotakata,etal.growthandwoodqualityofsugi(cryptomeriajaponica)plantedinakitaprefecture(ii)[j].juvenile/maturewooddeterminationofagedtrees,2005,51(2):95-101.
[17]  chih-mingchiu,song-yungwang,cheng-junglin,etal.applicationofthefractometerforcrushingstrength:juvenile-maturewooddemarcationintaiwania(taiwaniacryptomerioids)[j].thejapanwoodresearchsociety,2006(52):9-14.
[18]  王金满,刘一星,李坚.人工林长白落叶松木材材质早期预测模式(ⅰ)――材性变异、幼龄期与成熟期的界定[j].东北林业大学学报,1996,24(5):65-71.wangjm,liuyx,lij.earlypredictionmodelonwoodpropertiesoflarixolgensisa.plantation(ⅰ)――variationonwoodproperties,demarcationofjuvenileandmatureperiod[j].journalofnortheastforestryuniversity,1996,24(5):65-71.
[19]  钟伟华,何昭珩,周达,等.主成分聚类在火炬松种子园疏伐中的运用[j].福建林学院学报,1999,19(1):33-36.zhongwh,hesh,zhoud,etal.theapplicationofprincipalcomponentanalysisonthinningofloblollypineseedorchard[j].journaloffujiancollegeofforestry,1999,19(1):33-36.
[20]  陈建宏,蒋权,郑海力,等.基于主成分聚类分析的采矿方法优选[j].科技导报,2011,29(27):36-41.chenjh,jiangq,zhenghl,etal.optimizationofminingmethodsbasedonprincipalcompositionclusteranalysis[j].science&technologyreview,2011,29(27):36-41.
[21]  gaitanin.lehmannc,santamourism.etal.usingprincipalcomponentandclusteranalysisintheheatingevaluationoftheschoolbuildingsector[j].appliedenergy,2010(87):2079-2086.
[22]  gaudreaultn,mezghanin,fuentesa,etal.principalcomponentclusteringoffrontalplanekneekinematics[j].osteoarthritisandcartilage,2010,18:s17.
[23]  马逢时,吴诚欧,菜霞.基于minitab的现代实用统计[m].北京:中国人民大学出版社,2009.
[24]  费本华,郭伟,张赛男,等.人工神经网络技术在木材科学中的应用[j].木材加工机械,2009(3):34-37.feibh,guow,zhangsn,etal.artificialneuralnetworktechnologyintheapplicationofwoodscience[j].woodprocessingmachinery,2009(3):34-37.
[25]  韩力群.人工神经网络教程[m].北京:北京邮电大学出版社,2006.
[26]  zhuxd,caoj,wangfh,etal.wooddefectidentificationbasedonartificialneuralnetwork[j].communicationsincomputerandinformationscience,2009,51(4):207-214.
[27]  wanglihai,qiwei,lil.etal.patternrecognitionandsizedeterminationofinternalwooddefectsbasedonwaveletneuralnetworks[j].computerandelectronicsinagriculture,2009(69):142-148.
[28]  marcocastellani,hefinrowlands.evolutionaryartificialneuralnetworkdesignandtrainingforwoodveneerclassification[j].engineeringapplicationsofartificialintelligence,2009(22):732-741.
[29]  江泽慧.姜笑梅.木材结构与其品质特性的相关性[m].北京:科学出版社,2008.
[30]  陈永义,俞小鼎,高学浩,等.处理非线性分类和回归问题的一种新方法(ⅰ)――支持向量机方法简介[j].应用气象学报,2004,15(3):355-365.chenyy,yuxd,gaoxh,etal.anewmethodfornon-linearclassifyandnon-linearregression:introductiontosupportvectormachine[j].quarterlyjournalofappliedmeteorology,2004,15(3):355-365.
[31]  付阳.李昆仑.支持向量机模型参数选择方法综述[j].电脑知识与技术,2010,6(28):8081-8082.fuy,likl.asurveyofmodelparametersselectionmethodforsupportvectormachines[j].computerknowledgeandtechnology,2010,6(28):8081-8082.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133