全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大规模网络的三角形模体社区发现模型

DOI: 10.13232/j.cnki.jnju.2014.04.011

Keywords: 三角形模体,大规模网络,重叠社区发现,em(expectationmaximization)算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究表明将边表示的网络转换为三角形模体表示形式,可以有效解决基于模型社区发现方法由网络规模庞大带来的计算瓶颈问题。提出一个三角形模体社区发现模型mcdtm(amodelforcommunitydetectionbasedontriangularmotifs),其将网络表示为一系列三角形模体,利用categorical分布对各三角形模体的生成过程建模,用最大似然参数估计方法给出参数估计的推理过程,根据参数估计结果可得节点、边及三角形模体的社区隶属度。人工网络和实际网络上的实验证明mcdtm模型可快速准确地发现网络的潜在结构。

References

[1]  airodiem,bleidm,fienbergse,etal.mixedmembershipstochasticblockmodels.journalofmachinelearningresearch,2008,9:1981~2014.
[2]  yinjm,hoqr,ericxp.ascalableapproachtoprobabilisticlatentspaceinferenceoflarge-scalenetworks.in:advancesinneuralinformationprocessingsystems,unitedstates:curranassociatesinc.,2013:422~430.
[3]  gopalanpk,bleidm.efficientdiscoveryofoverlappingcommunitiesinmassivenetworks.proceedingsofthenationalacademyofsciences,unitedstates,2013,110(36):14534~14539.
[4]  renw,yangy,liaoxp,etal.simpleprobabilisticalgorithmfordetectingcommunitystructure.physicalreviewe,2009,79:036111.
[5]  marknewman.networkdata.http://www-personal.umich.edu/~mejn/netdata/,2014-6-18.
[6]  jureleskovec.stanfordnetworkanalysisproject.http://snap.stanford.edu/data/index.html,2014-6-18.
[7]  hoqr,yinjm,ericxp.ontriangularversusedgerepresentations-towardsscalablemodelingofnetworks.in:advancesinneuralinformationprocessingsystems,unitedstates:curranassociatesinc.,2012:2141~2149.
[8]  gopalanpk,mimnod,gerrishsm,etal.scalableinferenceofoverlappingcommunities.in:advancesinneuralinformationprocessingsystems,unitedstates:curranassociatesinc.,2012:2258~2266.
[9]  gopalanpk,wangc,davidb.modelingoverlappingcommunitieswithnodepopularities.in:advancesinneuralinformationprocessingsystems,unitedstates:curranassociatesinc.,2013:2850~2858.
[10]  ballb,karrerb,newmanmej.efficientandprincipledmethodfordetectingcommunitiesinnetwork.physicalreview,2011,84:036103.
[11]  hofmanjm,wigginsch.bayesianapproachtonetworkmodularity.physicalreviewletters,2008,100(25):258701.
[12]  nowickik,snijderst.estimationandpredictionforstochasticblockstructures.journalofamericanstatisticalassociation,2001,96(455):1077~1087.
[13]  daudinj,picardf,robins.amixturemodelforrandomgraphs.statisticsandcomputing,2008,18:179~183.
[14]  zanghih,ambroisec,mielev.fastonlinegraphclusteringviaerdös-rényimixture.patternrecognition,2008,41(12):3592~3599.
[15]  zanghih,picardf,mielev,etal.strategiesforonlineinferenceofmodel-basedclusteringinlargeandgrowingnetworks.theannalsofappliedstatistics,2010,4(2):687~714.
[16]  latouchep,birmelee,ambroisec.variationalbayesianinferenceandcomplexitycontrolforstochasticblockmodels.statisticalmodeling,2012,12(1):93~115.
[17]  latouchep,birmelee,ambroisec.overlappingstochasticblockmodelswithapplicationtothefrenchpoliticalblogosphere.theannalsofappliedstatistics,2011,5(1):309~336.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133