全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

?面向不确定数据的近似骨架启发式聚类算法

DOI: 10.13232/j.cnki.j nju.2015.01.027, PP. 197-205

Keywords: np-难解,启发式算法,近似骨架,不确定数据聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

?不确定数据聚类是传统数据挖掘的扩展,面对不确定数据聚类,研究者们经常把聚类问题描述成组合优化问题,并设计启发式聚类算法进行求解。现有的启发式聚类算法,如uk-means和uk-medoids具有容易理解和实现简单等优点,但初始解敏感问题严重影响了聚类质量。本文在近似骨架理论的基础上,提出了一种近似骨架启发式聚类算法appgcu(approximatebackboneguidedheuristicclusteringalgorithmforuncertaindata)。该算法首先对原数据集完成p次采样,在采样后的规模较小的p个数据集上分别执行uk-medoids算法得到p个局部最优解;然后通过对p个局部最优解求交得到近似骨架,并从中提取初始簇心;最后从初始簇心开始,启发式搜索出聚类结果。在仿真和实际数据集中的实验结果表明,算法appgcu的聚类结果明显高于实验对比的启发式聚类算法,提高了聚类质量。?

References

[1]  reevescr.landscapes,operatorsandheuristicsearch.annalsofoperationresearch,1999,86(1):473~490.
[2]  chaur,chengm,kaob,etal.uncertaindatamining:anexampleinclusteringlocationdata.in:proceedingsofthe10thpacific-asiaconferenceonknowledgediscoveryanddatamiing,springerverlag,2006:199~204.
[3]  宗瑜,江贺,李明楚.近似骨架导向的归约聚类算法.电子与信息学报,2009,31(12):2953~2957.
[4]  江贺,张宪超,陈国良.图的二分问题唯一全局最优解实例与骨架计算复杂性.科学通报,2007,52(17):2077~2081.
[5]  valnirfj.backboneguideddynamiclocalsearchforpropositionalsatisfiability.in:prceedingof9thinternationalsymposiumonartificialintelligenceandmathematics(ai&math-06),florida,america,springerverlag,2006:100~108.
[6]  zhangwx.configurationlandscapeanalysisandbackboneguidedlocalsearch:parti:satisfiabilityandmaximumsatisfiability.artificialintelligence,2004,158(1):1~26.
[7]  江贺,邱铁,胡燕等.启发式算法设计中的骨架分析与应用.自动化学报,2011,37(3):257~269.
[8]  zongy,xugd,jinp,etal.hc_ab:anewheuristicclusteringalgorithmbasedonaproximatebackbone.informationprocessingletters,2011,111:857~863.
[9]  kangp,chosz.k-meansclusteringseedsinitializationbasedoncentrality,sparselyandisotropy.in:proceedingsofthe10thinternationalconferenceonintelligentdataengineeringandautomatedlearning,ieeecomputersociety,2009:109~117.
[10]  陈永彬,张琢.智能单粒子优化算法在聚类分析中的应用.南京大学学报(自然科学),2011,(5):578~584.
[11]  nikosp,ioannisk,evangelose,etal.clusteringuncertaintrajectories.knowledgeinfomationsystem,2011,28:117~147.
[12]  steffenf,wolfgangg,michaelk.recurrentneuralnetworksforfuzzydata.integratedcomputer-aidedengineering,2011,18:265~280.
[13]  alastairc,janae,chrisj,etal.astatespaceapproachtoextractingthesignalfromuncetaindata.journalofbusinessandeconomicstatistics,2012,30(2):173~180.
[14]  dingxf,jinh.efficientandprogressivealgorithmsfordistributedskylinequeriesoveruncertaindata.ieeetransactionsonknowledgeanddataengineering,2012,24(8):1448~1462.
[15]  汤克明,戴彩艳,陈?.一种基于滑动窗口的不确定数据量top-k查询算法.南京大学学报(自然科学),2012,48(3):351-359.
[16]  qinb,xiayn,sunilp.ruleintroductionforuncertaindata.knowledgeinformationsytem,2011,29:103~130.
[17]  徐健锋,张远健,zhoud,etal.基于粒计算的不确定时间序列建模及其聚类.南京大学学报(自然科学),2014,50(1):86~94.
[18]  drineasp,friezer,vempalas,etal.clusteringlargegraphsviasingularvaluedecompostion.machinelearning,2004,56(1-3):9~33.
[19]  gullof,pontig,tagarellia,etal.clusteringuncertaindataviak-medoids.in:proceeingsofthe2ndinternationalconferenceonscalableuncertaintymanagement,springerverlag,2008:229~242.
[20]  江贺,张宪超,陈国良等.二次分配问题的骨架分析与算法设计.中国科学e辑,2008,38(2):209~222.
[21]  wangk,ngaib,kaock,etal.efficientclusteringofuncertaindata.in:proceedingsofthe6thinternationalconferenceondatamining,ieeecomputersociety,2006:436~445.
[22]  khanss,ahmada.clustercenterinitializationalgorithmfork-meansclustering.journalofpatternrecognitionletters,2004,25(11):1293~1302.
[23]  redmondsj,heneghanc.amethodforinitializingthek-meansclusteringalgorithmuingkd-tree.journalofpatternrecognitionletters,2007,28(8):965~973.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133