The present study used a coordinated analyses approach to examine the association of physical activity and cognitive change in four longitudinal studies. A series of multilevel growth models with physical activity included both as a fixed (between-person) and time-varying (within-person) predictor of four domains of cognitive function (reasoning, memory, fluency, and semantic knowledge) was used. Baseline physical activity predicted fluency, reasoning and memory in two studies. However, there was a consistent pattern of positive relationships between time-specific changes in physical activity and time-specific changes in cognition, controlling for expected linear trajectories over time, across all four studies. This pattern was most evident for the domains of reasoning and fluency. 1. Introduction Previous research has clearly demonstrated that cognitive change in old age does not occur in a homogenous manner for all individuals [1–3]. A number of predictors of cognitive change in old age have been identified, such as education, hypertension, objective indices of health and cardiovascular disease, and apolipoprotein E [4]. Regular engagement in different types of activities may also influence cognitive change. More specifically, according to the “use it or lose it” hypothesis [5], regular engagement in different activities may buffer age-related decline in cognitive functioning. A number of studies have found that general lifestyle activity engagement (often operationalized as the combination of intellectual, social, and physical activities) is associated with cognitive change [6–8] and that decline in activity in older age is associated with decline in cognitive functioning. In addition to general activity, other studies have specifically targeted the association of physical activity with cognitive change. Indeed, a growing body of the literature highlights the potential benefits of physical activity on the structure and function of the brain [9, 10]. The first line of evidence for the relationship between physical activity and cognition comes from a number of cross-sectional studies demonstrating that physically active older adults have higher cognitive performance and functioning compared with less active older adults [11, 12]. However, the evidence derived from these cross-sectional studies is limited, as it is not. possible to draw conclusions in terms of more complex associations of change. Stronger evidence may be found in longitudinal studies. Longitudinal studies may be viewed as the second line of evidence, offering valuable information on the
References
[1]
H. Christensen, A. J. Mackinnon, A. E. Korten et al., “An analysis of diversity in the cognitive performance of elderly community dwellers: individual differences in change scores as a function of age,” Psychology and Aging, vol. 14, no. 3, pp. 365–379, 1999.
[2]
S. M. Hofer, H. Christensen, A. J. Mackinnon et al., “Change in cognitive functioning associated with ApoE genotype in a community sample of older adults,” Psychology and Aging, vol. 17, no. 2, pp. 194–208, 2002.
[3]
K. W. Schaie, Intellectual Development in Adulthood, Cambridge University Press, Cambridge, UK, 1996.
[4]
K. Anstey and H. Christensen, “Education, activity, health, blood pressure and apolipoprotein E as predictors of cognitive change in old age: a review,” Gerontology, vol. 46, no. 3, pp. 163–177, 2000.
[5]
T. A. Salthouse, Theoretical Perspectives on Cognitive Aging, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1991.
[6]
D. F. Hultsch, C. Hertzog, B. J. Small, and R. A. Dixon, “Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging?” Psychology and Aging, vol. 14, no. 2, pp. 245–263, 1999.
[7]
A. Mackinnon, H. Christensen, S. M. Hofer, A. E. Korten, and A. F. Jorm, “Use it and still lose it? The association between activity and cognitive performance established using latent growth techniques in a community sample,” Aging, Neuropsychology, and Cognition, vol. 10, no. 3, pp. 215–229, 2003.
[8]
R. S. Newson and E. B. Kemps, “General lifestyle activities as a predictor of current cognition and cognitive change in older adults: a cross-sectional and longitudinal examination,” Journals of Gerontology, vol. 60, no. 3, pp. P113–P120, 2005.
[9]
A. F. Kramer and K. I. Erickson, “Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function,” Trends in Cognitive Sciences, vol. 11, no. 8, pp. 342–348, 2007.
[10]
J. J. Ratey and J. E. Loehr, “The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations,” Reviews in the Neurosciences, vol. 22, no. 2, pp. 171–185, 2011.
[11]
M. Lindwall, M. Rennemark, and T. Berggren, “Movement in mind: the relationship of exercise with cognitive status for older adults in the Swedish National Study on Aging and Care (SNAC),” Aging and Mental Health, vol. 12, no. 2, pp. 212–220, 2008.
[12]
P. D. Tomporowki, “Physical activity, cognition, and aging: a review of reviews,” in Active Living, Cognitive Functioning, and Aging, L. Poon, W. Chodzjo-Zajko, and P. D. Tomporowski, Eds., pp. 15–32, Human Kinetics, Champagne, Ill, USA, 2006.
[13]
H. Bosma, M. P. J. Van Boxtel, R. W. H. M. Ponds et al., “Engaged lifestyle and cognitive function in middle and old-aged, non-demented persons: a reciprocal association?” Zeitschrift fur Gerontologie und Geriatrie, vol. 35, no. 6, pp. 575–581, 2002.
[14]
L. E. Middleton, D. E. Barnes, L. Y. Lui, and K. Yaffe, “Physical activity over the life course and its association with cognitive performance and impairment in old age,” Journal of the American Geriatrics Society, vol. 58, no. 7, pp. 1322–1326, 2010.
[15]
M. Richards, R. Hardy, and M. E. J. Wadsworth, “Does active leisure protect cognition? Evidence from a national birth cohort,” Social Science and Medicine, vol. 56, no. 4, pp. 785–792, 2003.
[16]
A. Singh-Manoux, M. Hillsdon, E. Brunner, and M. Marmot, “Effects of physical activity on cognitive functioning in middle age: evidence from the whitehall II prospective cohort study,” American Journal of Public Health, vol. 95, no. 12, pp. 2252–2258, 2005.
[17]
B. M. Van Gelder, M. A. R. Tijhuis, S. Kalmijn, S. Giampaoli, A. Nissinen, and D. Kromhout, “Physical activity in relation to cognitive decline in elderly men: the FINE study,” Neurology, vol. 63, no. 12, pp. 2316–2321, 2004.
[18]
J. Weuve, J. H. Kang, J. E. Manson, M. M. B. Breteler, J. H. Ware, and F. Grodstein, “Physical activity, including walking, and cognitive function in older women,” Journal of the American Medical Association, vol. 292, no. 12, pp. 1454–1461, 2004.
[19]
K. Yaffe, D. Barnes, M. Nevitt, L. Y. Lui, and K. Covinsky, “A prospective study of physical activity and cognitive decline in elderly women women who walk,” Archives of Internal Medicine, vol. 161, no. 14, pp. 1703–1708, 2001.
[20]
K. Yaffe, A. J. Fiocco, K. Lindquist et al., “Predictors of maintaining cognitive function in older adults: the Health ABC Study,” Neurology, vol. 72, no. 23, pp. 2029–2035, 2009.
[21]
A. A. M. Bielak, “How can we not ‘lose it’ if we still don't understand how to ‘use it’? unanswered questions about the influence of activity participation on cognitive performance in older age—a mini-review,” Gerontology, vol. 56, no. 5, pp. 507–519, 2010.
[22]
A. A. M. Bielak, T. F. Hughes, B. J. Small, and R. A. Dixon, “It's never too late to engage in lifestyle activities: significant concurrent but not change relationships between lifestyle activities and cognitive speed,” Journals of Gerontology, vol. 62, no. 6, pp. P331–P339, 2007.
[23]
B. J. Small, R. A. Dixon, J. J. McArdle, and K. J. Grimm, “Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the Victoria Longitudinal Study,” Neuropsychology, vol. 25, pp. 144–155, 2012.
[24]
S. Colcombe and A. F. Kramer, “Fitness effects on the cognitive function of older adults: a meta-analytic study,” Psychological Science, vol. 14, no. 2, pp. 125–130, 2003.
[25]
S. M. Hofer and A. M. Piccinin, “Integrative data analysis through coordination of measurement and analysis protocol across independent longitudinal studies,” Psychological Methods, vol. 14, no. 2, pp. 150–164, 2009.
[26]
S. M. Hofer and A. M. Piccinin, “Toward an integrative science of life-span development and aging,” Journals of Gerontology, vol. 65, no. 3, pp. 269–278, 2010.
[27]
J. L. Horn and S. M. Hofer, “Major abilities and development in the adult period,” in Intellectual Development, R. J. Sternberg and C. A. Berg, Eds., pp. 44–99, Cambridge University Press, New York, NY, USA, 1992.
[28]
I. Dureman and H. S?llde, Psykometriska och Experimentalpsykologiska Metoder f?r Klinisk Till?mpning, Almqvist & Wiksell, Uppsala, Sweden, 1959.
[29]
B. Johansson, S. H. Zarit, and S. Berg, “Changes in cognitive functioning of the oldest old,” Journals of Gerontology, vol. 47, no. 2, pp. P75–P80, 1992.
[30]
D. Wechsler, Wechsler Memory Scale-Revised, Psychological Corporation, San Antonio, Tex, USA, 1987.
[31]
C. O. Jonsson and L. Molander, Manual Till CVB-Skalen, Psykologi Forlaget, Stockholm, Sweden, 1964.
[32]
K. W. Schaie, Adult Mental Abilities Test, Consulting Psychologists Press, Palo Alto, Calif, USA, 1985.
[33]
L. Thurstone and T. Thurstone, Examiner Manual For the SRA Primary Mental Abilities Test, Science Research Associates, Chicago, Ill, USA, 1949.
[34]
R. B. Ekstrom, J. W. French, H. H. Harman, and D. Dermen, Kit of Factor-Referenced Cognitive Tests, Educational Testing Service, Princeton, NJ, USA, 1976.
[35]
D. F. Hultsch, C. Hertzog, and R. A. Dixon, “Ability correlates of memory performance in adulthood and aging,” Psychology and Aging, vol. 5, no. 3, pp. 356–368, 1990.
[36]
D. Hedeker and R. D. Gibbons, “Application of random-effects pattern-mixture models for missing data in longitudinal studies,” Psychological Methods, vol. 2, no. 1, pp. 64–78, 1997.
[37]
J. L. Etnier, “Physical activity programming to promote cognitive function: are we ready for prescription?” in Aging, Exercise, and Cognition Series Vol 3 Enhancing Cognitive Functioning and Brain Plasticity, W. W. Spirduso, W. Chodzko-Zajko, and L. W. Poon, Eds., pp. 159–176, Human Kinetics, Urbana-Champaign, Ill, USA, 2009.
[38]
M. Lindwall, P. Larsman, and M. S. Hagger, “The reciprocal relationship between physical activity and depression in older european adults: a prospective cross-lagged panel design using SHARE data,” Health Psychology, vol. 30, no. 4, pp. 453–462, 2011.
[39]
S. W. MacDonald, C. A. DeCarlo, and R. A. Dixon, “Linking biological and cognitive aging: toward improving characterizations of developmental time,” The Journals of Gerontology, vol. 66, supplement 1, pp. i59–i70, 2011.
[40]
W. Spirduso, L. W. Poon, and W. Chodzko-Zaiko, “Using resources and reserves in an exercise-cognition model,” in Exercise and Its Mediating Effect on Cognition, W. Spirduso, L. W. Poon, and W. Chodzko-Zaiko, Eds., Human Kinetics, Champaign, Ill, USA, 2008.
[41]
J. L. Etnier, “Interrelationships of exercise, mediator variables, and cognition,” in Aging, Exercise and Cognition Series: Vol 2 Exercise and Its Mediating Effects on Cognition, W. W. Spirduso, W. Chodzko-Zajko, and L. W. Poon, Eds., pp. 13–32, Human Kinetics, Urbana-Champaign, Ill, USA, 2008.
[42]
J. L. Etnier, P. M. Nowell, D. M. Landers, and B. A. Sibley, “A meta-regression to examine the relationship between aerobic fitness and cognitive performance,” Brain Research Reviews, vol. 52, no. 1, pp. 119–130, 2006.