全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Attention-Deficit/Hyperactivity Disorder in Childhood Is Associated with Cognitive Test Profiles in the Geriatric Population but Not with Mild Cognitive Impairment or Alzheimer's Disease

DOI: 10.4061/2011/729801

Full-Text   Cite this paper   Add to My Lib

Abstract:

The frequency of ADHD in the aging population and its relationship to late-life cognitive decline has not been studied previously. To address this gap in our understanding, the Wender-Utah ADHD Rating scale (WURS) was administered to 310 geriatric subjects with cognitive status ranging from normal cognition to mild cognitive impairment to overt dementia. The frequency of WURS-positive ADHD in this sample was 4.4%. WURS scores were not related to cognitive diagnoses, but did show nonlinear associations with tasks requiring sustained attention. The frequency of ADHD appears stable across generations and does not appear to be associated with MCI or dementia diagnoses. The association of attentional processing deficits and WURS scores in geriatric subjects could suggest that such traits remain stable throughout life. Caution should be considered when interpreting cognitive test profiles in the aging population that exhibit signs and symptoms of ADHD, as attentional deficits may not necessarily imply the existence of an underlying neurodegenerative disease state. 1. Introduction Attention-deficit hyperactivity disorder (ADHD) is a common learning disability in children [1–7]. Symptoms of ADHD include inattention, hyperactivity, and impulsivity [2, 5]. About 1–9.5% of children are estimated to suffer from ADHD [1–3, 5, 8, 9]. Previous studies have suggested that ADHD is increasing in the United States [2, 9]. Factors including increased television and video game use and a diet defined by excessive sugar, high-fructose corn syrup, and preservatives have all been implicated as possible mechanisms leading to ADHD [4, 10–12]. Genetic predisposition to ADHD has also been suggested by several groups and could play a role beyond that of environmental factors in the development of ADHD [13–18]. The long-term consequences of ADHD in the geriatric population and the possible association of ADHD with cognitive decline in older adults are unknown. ADHD persisting into adulthood has been well documented [6, 8, 19–27]. It is possible that early learning disabilities could influence later life cognitive function and be associated with late-life neurocognitive disorders such as Alzheimer’s disease [28]. In fact, individuals with a history of ADHD have a higher prevalence of comorbid psychiatric disorders such as antisocial disorders, mood and anxiety disorders, and substance abuse disorders when they reach adulthood [20, 25]. Such comorbidity could contribute to cognitive dysfunction in older adults meeting diagnostic criteria for mild cognitive impairment (MCI), Alzheimer’s

References

[1]  W. J. Barbaresi, S. K. Katusic, R. C. Colligan et al., “How common is attention-deficit/hyperactivity disorder? Incidence in a population-based birth cohort in Rochester, Minn,” Archives of Pediatrics and Adolescent Medicine, vol. 156, no. 3, pp. 217–224, 2002.
[2]  J. Biederman, “Attention-deficit/hyperactivity disorder: a selective overview,” Biological Psychiatry, vol. 57, no. 11, pp. 1215–1220, 2005.
[3]  E. J. Costello, S. Mustillo, A. Erkanli, G. Keeler, and A. Angold, “Prevalence and development of psychiatric disorders in childhood and adolescence,” Archives of General Psychiatry, vol. 60, no. 8, pp. 837–844, 2003.
[4]  P. Curatolo, C. Paloscia, E. D'Agati, R. Moavero, and A. Pasini, “The neurobiology of attention deficit/hyperactivity disorder,” European Journal of Paediatric Neurology, vol. 13, no. 4, pp. 299–304, 2009.
[5]  C. J. Kratochvil, B. S. Vaughan, A. Barker, L. Corr, A. Wheeler, and V. Madaan, “Review of pediatric attention deficit/hyperactivity disorder for the general psychiatrist,” Psychiatric Clinics of North America, vol. 32, no. 1, pp. 39–56, 2009.
[6]  E. Mick, S. V. Faraone, and J. Biederman, “Age-dependent expression of attention-deficit/hyperactivity disorder symptoms,” Psychiatric Clinics of North America, vol. 27, no. 2, pp. 215–224, 2004.
[7]  American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 1994.
[8]  I. Bitter, V. Simon, S. Bálint, A. Mészáros, and P. Czobor, “How do different diagnostic criteria, age and gender affect the prevalence of attention deficit hyperactivity disorder in adults? An epidemiological study in a Hungarian community sample,” European Archives of Psychiatry and Clinical Neuroscience, vol. 260, no. 4, pp. 287–296, 2010.
[9]  “Increasing prevalence of parent-reported attention-deficit/hyperactivity disorder among children—United States, 2003 and 2007,” Morbidity and Mortality Weekly Report (MMWR), vol. 59, pp. 1439–1443, 2010.
[10]  D. A. Christakis, B. E. Ebel, F. P. Rivara, and F. J. Zimmerman, “Television, video, and computer game usage in children under 11 years of age,” Journal of Pediatrics, vol. 145, no. 5, pp. 652–656, 2004.
[11]  D. A. Christakis, F. J. Zimmerman, D. L. DiGiuseppe, and C. A. McCarty, “Early television exposure and subsequent attentional problems in children,” Pediatrics, vol. 113, no. 4, pp. 708–713, 2004.
[12]  H. C. Steinhausen, “The heterogeneity of causes and courses of attention-deficit/hyperactivity disorder,” Acta Psychiatrica Scandinavica, vol. 120, no. 5, pp. 392–399, 2009.
[13]  R. Taurines, J. Schmitt, T. Renner, A. C. Conner, A. Warnke, and M. Romanos, “Developmental comorbidity in attention-deficit/hyperactivity disorder,” ADHD Attention Deficit and Hyperactivity Disorders, vol. 2, no. 4, pp. 267–289, 2010.
[14]  T. E. Wilens and T. J. Spencer, “Understanding attention-deficit/hyperactivity disorder from childhood to adulthood,” Postgraduate Medicine, vol. 122, no. 5, pp. 97–109, 2010.
[15]  E. G. Willcutt, B. F. Pennington, L. Duncan et al., “Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches,” Journal of Developmental and Behavioral Pediatrics, vol. 31, no. 7, pp. 533–544, 2010.
[16]  A. Lo-Castro, E. D'Agati, and P. Curatolo, “ADHD and genetic syndromes,” Brain and Development, vol. 33, no. 6, pp. 456–461, 2010.
[17]  S. V. Faraone and E. Mick, “Molecular genetics of attention deficit hyperactivity disorder,” Psychiatric Clinics of North America, vol. 33, no. 1, pp. 159–180, 2010.
[18]  T. Banaschewski, K. Becker, S. Scherag, B. Franke, and D. Coghill, “Molecular genetics of attention-deficit/hyperactivity disorder: an overview,” European Child and Adolescent Psychiatry, vol. 19, no. 3, pp. 237–257, 2010.
[19]  S. Bálint, P. Czobor, S. Komlósi, á. Mészáros, V. Simon, and I. Bitter, “Attention deficit hyperactivity disorder (ADHD): gender- and age-related differences in neurocognition,” Psychological Medicine, vol. 39, no. 8, pp. 1337–1345, 2009.
[20]  J. Biederman, “Impact of comorbidity in adults with attention-deficit/hyperactivity disorder,” Journal of Clinical Psychiatry, vol. 65, no. 3, supplement, pp. 3–7, 2004.
[21]  S. V. Faraone, T. J. Spencer, B. Montano, and J. Biederman, “Attention-deficit/hyperactivity disorder in adults: a survey of current practice in psychiatry and primary care,” Archives of Internal Medicine, vol. 164, no. 11, pp. 1221–1226, 2004.
[22]  J. Fayyad, R. De Graaf, R. Kessler et al., “Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder,” British Journal of Psychiatry, vol. 190, pp. 402–409, 2007.
[23]  R. C. Kessler, L. Adler, M. Ames et al., “The prevalence and effects of adult attention deficit/hyperactivity disorder on work performance in a nationally representative sample of workers,” Journal of Occupational and Environmental Medicine, vol. 47, no. 6, pp. 565–572, 2005.
[24]  R. C. Kessler, L. A. Adler, R. Barkley et al., “Patterns and predictors of attention-deficit/hyperactivity disorder persistence into adulthood: results from the national comorbidity survey replication,” Biological Psychiatry, vol. 57, no. 11, pp. 1442–1451, 2005.
[25]  S. Mannuzza, R. G. Klein, A. Bessler, P. Malloy, and M. Lapadula, “Adult psychiatric status of hyperactive boys grown up,” American Journal of Psychiatry, vol. 155, no. 4, pp. 493–498, 1998.
[26]  V. Simon, P. Czobor, S. Balint, A. Meszaros, and I. Bitter, “Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis,” British Journal of Psychiatry, vol. 194, no. 3, pp. 204–211, 2009.
[27]  T. E. Wilens, S. V. Faraone, and J. Biederman, “Attention-deficit/hyperactivity disorder in adults,” Journal of the American Medical Association, vol. 292, no. 5, pp. 619–623, 2004.
[28]  S. J. Krinsky-McHale, D. A. Devenny, P. Kittler, and W. Silverman, “Selective attention deficits associated with mild cognitive impairment and early stage Alzheimer's disease in adults with Down syndrome,” American Journal on Mental Retardation, vol. 113, no. 5, pp. 369–419, 2008.
[29]  A. M. Boonstra, J. Oosterlaan, J. A. Sergeant, and J. K. Buitelaar, “Executive functioning in adult ADHD: a meta-analytic review,” Psychological Medicine, vol. 35, no. 8, pp. 1097–1108, 2005.
[30]  D. W. Lovejoy, J. D. Ball, M. Keats et al., “Neuropsychological performance of adults with attention deficit hyperactivity disorder (ADHD): diagnostic classification estimates for measures of frontal lobe/executive functioning,” Journal of the International Neuropsychological Society, vol. 5, no. 3, pp. 222–233, 1999.
[31]  L. J. Seidman, A. Doyle, R. Fried, E. Valera, K. Crum, and L. Matthews, “Neuropsychological function in adults with attention-deficit/hyperactivity disorder,” Psychiatric Clinics of North America, vol. 27, no. 2, pp. 261–282, 2004.
[32]  G. S. Smith, E. Kramer, Y. Ma et al., “The functional neuroanatomy of geriatric depression,” International Journal of Geriatric Psychiatry, vol. 24, no. 8, pp. 798–808, 2009.
[33]  M. F. Ward, P. H. Wender, and F. W. Reimherr, “The Wender Utah Rating Scale: an aid in the retrospective diagnosis of childhood attention deficit hyperactivity disorder,” American Journal of Psychiatry, vol. 150, no. 6, pp. 885–890, 1993.
[34]  F. A. Schmitt, M. M. C. Wetherby, D. R. Wekstein, C. M. S. Dearth, and W. R. Markesbery, “Brain donation in normal aging: procedures, motivations, and donor characteristics from the Biologically Resilient Adults in Neurological Studies (BRAiNS) project,” Gerontologist, vol. 41, no. 6, pp. 716–722, 2001.
[35]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, “'Mini mental state'. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[36]  J. C. Morris, “The Clinical Dementia Rating (CDR): current version and scoring rules,” Neurology, vol. 43, no. 11, pp. 2412–2414, 1993.
[37]  A. Golimstok, J. I. Rojas, M. Romano, M. C. Zurru, D. Doctorovich, and E. Cristiano, “Previous adult attention-deficit and hyperactivity disorder symptoms and risk of dementia with Lewy bodies: a case-control study,” European Journal of Neurology, vol. 18, no. 1, pp. 78–84, 2011.
[38]  G. A. Jicha and S. A. Carr, “Conceptual evolution in Alzheimer's disease: implications for understanding the clinical phenotype of progressive neurodegenerative disease,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 253–272, 2010.
[39]  B. Oncü, S. Olmez, and V. Sentürk, “Validity and reliability of the Turkish version of the Wender Utah Rating Scale for attention-deficit/hyperactivity disorder in adults,” Türk Psikiyatri Dergisi, vol. 16, no. 4, pp. 252–259, 2005.
[40]  P. Retz-Junginger, W. Retz, D. Blocher et al., “Reliability and validity of the German short version of the Wender-Utah Rating Scale for the retrospective assessment of attention deficit/hyperactivity disorder,” Nervenarzt, vol. 74, no. 11, pp. 987–993, 2003.
[41]  R. Rodriguez-Jimenez, G. Ponce, R. Monasor, et al., “Validation in the adult Spanish population of the Wender Utah Rating Scale for the retrospective evaluation in adults of attention deficit/hyperactivity disorder in childhood,” Revista de Neurología, vol. 33, pp. 138–144, 2001.
[42]  B. S. McCann, L. Scheele, N. Ward, and P. Roy-Byrne, “Discriminant validity of the Wender Utah Rating Scale for attention-deficit/hyperactivity disorder in adults,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 12, no. 2, pp. 240–245, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133