全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pathways to Aging: The Mitochondrion at the Intersection of Biological and Psychosocial Sciences

DOI: 10.4061/2011/814096

Full-Text   Cite this paper   Add to My Lib

Abstract:

Compelling evidence suggests that both biological and psychosocial factors impact the process of aging. However, our understanding of the dynamic interplay among biological and psychosocial factors across the life course is still fragmentary. For example, it needs to be established how the interaction of individual factors (e.g., genetic and epigenetic endowment and personality), behavioral factors (e.g., physical activity, diet, and stress management), and psychosocial experiences (e.g., social support, well-being, socioeconomic status, and marriage) in perinatal, childhood, and adulthood influence health across the aging continuum. This paper aims to outline potential intersection points serving as an interface between biological and psychosocial factors, with an emphasis on the mitochondrion. Mitochondria are cellular organelles which play a critical role in cellular senescence. Both chronic exposure to psychosocial stress and genetic-based mitochondrial dysfunction have strikingly similar biological consequences; both predispose individuals to adverse age-related health disorders and early mortality. Exploring the interactive nature of the factors resulting in pathways to normal healthy aging, as well as those leading to morbidity and early mortality, will continue to enhance our ability to translate research into effective practices that can be implemented throughout the life course to optimise the aging process. 1. Introduction Aging is the inescapable process by which individuals, from the age of about 30 years old onwards, gradually lose maximal functional capacity [1]. Some resilient individuals experience a slow decline lasting several decades, attaining ages past one hundred years old and more [2]. These are exceptional centenarians who experience minimal physical impairment [3] along with healthy minds and bodies [4, 5]. However, many individuals experience more rapid functional declines in their 60’s or 70’s, sometimes afflicted with the “frailty syndrome”—defined as a lack in general strength and unusual susceptibility to disease or to other infirmity [6]—and these individuals often suffer from multiple age-related morbidities such as cardiovascular disease, neurodegenerative diseases, diabetes, and cancer [7]. The majority of individuals lie between these two extreme scenarios, with an average life expectancy of 81 years old in North America [8]. In the past century, we have witnessed significant increases in life expectancy as more individuals live longer [9, 10]. This increase in average life expectancy has undoubtedly resulted from

References

[1]  G. M. Martin, “Help wanted: phenomenological models for research on aging,” Science of Aging Knowledge Environment, vol. 2002, p. VP2, 2002.
[2]  P. Martin, M. MacDonald, J. Margrett, and L. W. Poon, “Resilience and longevity: expert survivorship of centenarians,” in New Frontiers in Resilient Aging: Life-Strengths and Well-Being in Late Life, P. Fry and C. Keyes, Eds., pp. 213–238, Cambridge University Press, New York, NY, USA, 2010.
[3]  J. Evert, E. Lawler, H. Bogan, and T. Perls, “Morbidity profiles of centenarians: survivors, delayers, and escapers,” Journals of Gerontology. Series A, vol. 58, no. 3, pp. 232–237, 2003.
[4]  L. W. Poon, P. Martin, A. Bishop et al., “Understanding centenarians' psychosocial dynamics and their contributions to health and quality of life,” Current Gerontology and Geriatrics Research, vol. 2010, Article ID 680657, 13 pages, 2010.
[5]  L. W. Poon, P. Martin, G. M. Clayton, S. Messner, C. A. Noble, and M. A. Johnson, “The influences of cognitive resources on adaptation and old age,” International Journal of Aging and Human Development, vol. 34, no. 1, pp. 31–46, 1992.
[6]  H. Bergman, L. Ferrucci, J. Guralnik et al., “Frailty: an emerging research and clinical paradigm—issues and controversies,” Journals of Gerontology. Series A, vol. 62, no. 7, pp. 731–737, 2007.
[7]  Q. L. Xue, “The frailty syndrome: definition and natural history,” Clinics in Geriatric Medicine, vol. 27, no. 1, pp. 1–15, 2011.
[8]  United Nations, “World Population Prospects, The 2006 Revisions,” 2006, http://www.un.org/esa/population/publications/wpp2006/WPP2006_Highlights_rev.pdf.
[9]  J. W. Vaupel, “Biodemography of human ageing,” Nature, vol. 464, no. 7288, pp. 536–542, 2010.
[10]  S. J. Olshansky, D. P. Goldman, Y. Zheng, and J. W. Rowe, “Aging in America in the twenty-first century: demographic forecasts from the MacArthur foundation research network on an aging society,” Milbank Quarterly, vol. 87, no. 4, pp. 842–862, 2009.
[11]  J. F. Fries, “Aging, natural death, and the compression of morbidity,” New England Journal of Medicine, vol. 303, no. 3, pp. 130–135, 1980.
[12]  S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004.
[13]  V. Mor, “The compression of morbidity hypothesis: a review of research and prospects for the future,” Journal of the American Geriatrics Society, vol. 53, no. 9, pp. S308–S309, 2005.
[14]  D. C. Wallace, “A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine,” Annual Review of Genetics, vol. 39, pp. 359–407, 2005.
[15]  S. R. W. L. Chan and E. H. Blackburn, “Telomeres and telomerase,” Philosophical Transactions of the Royal Society B, vol. 359, no. 1441, pp. 109–121, 2004.
[16]  P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” American Journal of Physiology, vol. 287, no. 4, pp. C817–C833, 2004.
[17]  M. R. Duchen, “Mitochondria in health and disease: perspectives on a new mitochondrial biology,” Molecular Aspects of Medicine, vol. 25, no. 4, pp. 365–451, 2004.
[18]  H. Y. Lee, C. S. Choi, A. L. Birkenfeld et al., “Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance,” Cell Metabolism, vol. 12, no. 6, pp. 668–674, 2010.
[19]  S. E. Schriner, N. J. Linford, G. M. Martin et al., “Medecine: extension of murine life span by overexpression of catalase targeted to mitochondria,” Science, vol. 308, no. 5730, pp. 1909–1911, 2005.
[20]  Y. C. Jang and H. V. Remmen, “The mitochondrial theory of aging: insight from transgenic and knockout mouse models,” Experimental Gerontology, vol. 44, no. 4, pp. 256–260, 2009.
[21]  R. T. Hepple, “Alterations in mitochondria and their impact in aging skeletal muscle,” in Sarcopenia—Age-Related Muscle Wasting and Weakness: Mechanisms and Treatments, G. Lynch, Ed., pp. 135–158, Springer, New York, NY, USA, 2011.
[22]  M. Picard, D. Ritchie, K. J. Wright et al., “Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers,” Aging Cell, vol. 9, no. 6, pp. 1032–1046, 2010.
[23]  A. B. Salmon, A. Richardson, and V. I. Pérez, “Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?” Free Radical Biology and Medicine, vol. 48, no. 5, pp. 642–655, 2010.
[24]  H. Van Remmen and D. P. Jones, “Current thoughts on the role of mitochondria and free radicals in the biology of aging,” Journals of Gerontology. Series A, vol. 64, no. 2, pp. 171–174, 2009.
[25]  B. Andziak, T. P. O'Connor, W. Qi et al., “High oxidative damage levels in the longest-living rodent, the naked mole-rat,” Aging Cell, vol. 5, no. 6, pp. 463–471, 2006.
[26]  J. M. Van Raamsdonk and S. Hekimi, “Reactive oxygen species and aging in caenorhabditis elegans: causal or casual relationship?” Antioxidants and Redox Signaling, vol. 13, no. 12, pp. 1911–1953, 2010.
[27]  W. Yang and S. Hekimi, “A mitochondrial superoxide signal triggers increased longevity in caenorhabditis elegans,” PLoS Biology, vol. 8, no. 12, Article ID e1000556, 2010.
[28]  D. P. Jones, “Extracellular redox state: refining the definition of oxidative stress in aging,” Rejuvenation Research, vol. 9, no. 2, pp. 169–181, 2006.
[29]  G. J. Brewer, “Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories,” Experimental Gerontology, vol. 45, no. 3, pp. 173–179, 2010.
[30]  L. P. Guarente, L. Patridge, and D. C. Wallace, Molecular Biology of Aging, Cold Springs Harbor, New York, NY, USA, 2008.
[31]  H. V. Remmen and A. Richardson, “Oxidative damage to mitochondria and aging,” Experimental Gerontology, vol. 36, no. 7, pp. 957–968, 2001.
[32]  L. A. Loeb, D. C. Wallace, and G. M. Martin, “The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 18769–18770, 2005.
[33]  A. Terman, T. Kurz, M. Navratil, E. A. Arriaga, and U. T. Brunk, “Mitochondrial Turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging,” Antioxidants and Redox Signaling, vol. 12, no. 4, pp. 503–535, 2010.
[34]  G. Lenaz, A. Baracca, R. Fato, M. L. Genova, and G. Solaini, “New insights into structure and function of mitochondria and their role in aging and disease,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 417–437, 2006.
[35]  I. Bratic and A. Trifunovic, “Mitochondrial energy metabolism and ageing,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 961–967, 2010.
[36]  S. Y. Park, B. Choi, H. Cheon et al., “Cellular aging of mitochondrial DNA-depleted cells,” Biochemical and Biophysical Research Communications, vol. 325, no. 4, pp. 1399–1405, 2004.
[37]  T. Wenz, “Mitochondria and PGC-1α in aging and age-associated diseases,” Journal of Aging Research, vol. 2011, Article ID 810619, 12 pages, 2011.
[38]  A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004.
[39]  C. C. Kujoth, A. Hiona, T. D. Pugh et al., “Medicine: mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging,” Science, vol. 309, no. 5733, pp. 481–484, 2005.
[40]  R. A. Miller, D. Gershon, T. A. Prolla, and R. H. Weindruch, “Evaluating evidence for aging,” Science, vol. 310, no. 5747, pp. 441–443, 2005.
[41]  K. Khrapko, Y. Kraytsberg, A. D. N. J. de Grey, J. Vijg, and E. A. Schon, “Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging?” Aging Cell, vol. 5, no. 3, pp. 279–282, 2006.
[42]  C. Desler, M. L. Marcker, K. K. Singh, and L. J. Rasmussen, “The importance of mitochondrial DNA in aging and cancer,” Journal of Aging Research, vol. 2011, Article ID 407536, 9 pages, 2011.
[43]  R. Gredilla, “DNA damage and base excision repair in mitochondria and their role in aging,” Journal of Aging Research, vol. 2011, Article ID 257093, 9 pages, 2011.
[44]  S. L. Hlelfand, J. H. Beuer, and J. G. Wood, “Calorie restriction in lower organisms,” in Molecular Biology of Aging, L. P. Guarente, L. Patridge, and D. C. Wallace, Eds., Cold Springs Harbor, New York, NY, USA, 2008.
[45]  R. T. Hepple, D. J. Baker, J. J. Kaczor, and D. J. Krause, “Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function,” FASEB Journal, vol. 19, no. 10, pp. 1320–1322, 2005.
[46]  R. T. Hepple, “Why eating less keeps mitochondria working in aged skeletal muscle,” Exercise and Sport Sciences Reviews, vol. 37, no. 1, pp. 23–28, 2009.
[47]  E. J. Masoro, “Caloric restriction and aging: an update,” Experimental Gerontology, vol. 35, no. 3, pp. 299–305, 2000.
[48]  R. Moreno-Loshuertos, R. Acín-Pérez, P. Fernández-Silva et al., “Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants,” Nature Genetics, vol. 38, no. 11, pp. 1261–1268, 2006.
[49]  E. Ruiz-Pesini, A. C. Lapena, C. Diez-Sanchez et al., “Human mtDNA haplogroups associated with high or reduced spermatozoa motility,” American Journal of Human Genetics, vol. 67, no. 3, pp. 682–696, 2000.
[50]  A. Marcuello, D. Martínez-Redondo, Y. Dahmani et al., “Human mitochondrial variants influence on oxygen consumption,” Mitochondrion, vol. 9, no. 1, pp. 27–30, 2009.
[51]  G. J. Tranah, T. M. Manini, K. K. Lohman, et al., “Mitochondrial DNA variation in human metabolic rate and energy expenditure,” Mitochondrion. In press.
[52]  Y. Nishigaki, N. Fuku, and M. Tanaka, “Mitochondrial haplogroups associated with lifestyle-related diseases and longevity in the Japanese population,” Geriatrics and Gerontology International, vol. 10, no. 1, pp. S221–S235, 2010.
[53]  S. L. Hendrickson, H. B. Hutcheson, E. Ruiz-Pesini et al., “Mitochondrial DNA haplogroups influence AIDS progression,” AIDS, vol. 22, no. 18, pp. 2429–2439, 2008.
[54]  E. Khusnutdinova, I. Gilyazova, E. Ruiz-Pesini et al., “A mitochondrial etiology of neurodegenerative diseases: evidence from Parkinson's disease,” Annals of the New York Academy of Sciences, vol. 1147, pp. 1–20, 2008.
[55]  C. Handschin and B. M. Spiegelman, “The role of exercise and PGC1α in inflammation and chronic disease,” Nature, vol. 454, no. 7203, pp. 463–469, 2008.
[56]  I. R. Lanza and K. Sreekumaran Nair, “Regulation of skeletal muscle mitochondrial function: genes to proteins,” Acta Physiologica, vol. 199, no. 4, pp. 529–547, 2010.
[57]  J. R. Sattelmair, J. H. Pertman, and D. E. Forman, “Effects of physical activity on cardiovascular and noncardiovascular outcomes in older adults,” Clinics in Geriatric Medicine, vol. 25, no. 4, pp. 677–702, 2009.
[58]  T. M. Manini, J. E. Everhart, K. V. Patel et al., “Daily activity energy expenditure and mortality among older adults,” Journal of the American Medical Association, vol. 296, no. 2, pp. 171–179, 2006.
[59]  T. M. Manini, “Energy expenditure and aging,” Ageing Research Reviews, vol. 9, no. 1, pp. 1–11, 2010.
[60]  US Department of Health and Human Services, Physical activity and health: a report of the Surgeon General, US Department of Health and Human Services, Public Health Service, CDC, National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Ga, USA, 1996.
[61]  A. Safdar, J. M. Bourgeois, D. I. Ogborn et al., “Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4135–4140, 2011.
[62]  P. A. Figueiredo, S. K. Powers, R. M. Ferreira, F. Amado, H. J. Appell, and J. A. Duarte, “Impact of lifelong sedentary behavior on mitochondrial function of mice skeletal muscle,” Journals of Gerontology. Series A, vol. 64, no. 9, pp. 927–939, 2009.
[63]  R. Krogh-Madsen, J. P. Thyfault, C. Broholm et al., “A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity,” Journal of Applied Physiology, vol. 108, no. 5, pp. 1034–1040, 2010.
[64]  J. P. Thyfault and F. W. Booth, “Lack of regular physical exercise or too much inactivity,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 14, no. 4, pp. 374–378, 2011.
[65]  A. Safdar, M. J. Hamadeh, J. J. Kaczor, S. Raha, J. deBeer, and M. A. Tarnopolsky, “Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults,” PLoS One, vol. 5, no. 5, Article ID e10778, 2010.
[66]  J. J. Ochoa, R. Pamplona, M. C. Ramirez-Tortosa et al., “Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q 10,” Free Radical Biology and Medicine, vol. 50, no. 9, pp. 1053–1064, 2011.
[67]  L. Hayflick, “Biological aging is no longer an unsolved problem,” Annals of the New York Academy of Sciences, vol. 1100, pp. 1–13, 2007.
[68]  E. Sahin, S. Colla, M. Liesa et al., “Telomere dysfunction induces metabolic and mitochondrial compromise,” Nature, vol. 470, no. 7334, pp. 359–365, 2011.
[69]  E. Sahin and R. A. Depinho, “Linking functional decline of telomeres, mitochondria and stem cells during ageing,” Nature, vol. 464, no. 7288, pp. 520–528, 2010.
[70]  C. D. Ryff and B. Singer, “Understanding healthy aging: key components and their integration,” in Handbook of Theories of Aging, V. L. Bengtson, D. Gans, N. Putney, and M. Silverstein, Eds., Springer, New York, NY, USA, 2009.
[71]  B. Singer and C. D. Ryff, “Positive health: resilience, recovery, primary prevention, and health promotion,” in New Horizons in Health: An Integrative Approach, National Academy Press, Washington, DC, USA, 2001.
[72]  E. S. Epel, “Psychological and metabolic stress: a recipe for accelerated cellular aging?” Hormones, vol. 8, no. 1, pp. 7–22, 2009.
[73]  M. Marmot, “Social determinants of health inequalities,” Lancet, vol. 365, no. 9464, pp. 1099–1104, 2005.
[74]  J. Denollet, “Personality and risk of cancer in men with coronary heart disease,” Psychological Medicine, vol. 28, no. 4, pp. 991–995, 1998.
[75]  J. Denollet, S. U. Sys, N. Stroobant, H. Rombouts, T. C. Gillebert, and D. L. Brutsaert, “Personality as independent predictor of long-term mortality in patients with coronary heart disease,” Lancet, vol. 347, no. 8999, pp. 417–421, 1996.
[76]  J. Denollet and D. L. Brutsaert, “Reducing emotional distress improves prognosis in coronary heart disease: 9-year mortality in a clinical trial of rehabilitation,” Circulation, vol. 104, no. 17, pp. 2018–2023, 2001.
[77]  P. Martin, J. Baenziger, M. MacDonald, I. C. Siegler, and L. W. Poon, “Engaged lifestyle, personality, and mental status among centenarians,” Journal of Adult Development, vol. 16, no. 4, pp. 199–208, 2009.
[78]  B. R. Levy, M. D. Slade, S. R. Kunkel, and S. V. Kasl, “Longevity increased by positive self-perceptions of aging,” Journal of Personality and Social Psychology, vol. 83, no. 2, pp. 261–270, 2002.
[79]  M. Jylh?, “What is self-rated health and why does it predict mortality? Towards a unified conceptual model,” Social Science and Medicine, vol. 69, no. 3, pp. 307–316, 2009.
[80]  E. L. Idler and Y. Benyamini, “Self-rated health and mortality: a review of twenty-seven community studies,” Journal of Health and Social Behavior, vol. 38, no. 1, pp. 21–37, 1997.
[81]  T. Seeman, E. Epel, T. Gruenewald, A. Karlamangla, and B. S. Mcewen, “Socio-economic differentials in peripheral biology: cumulative allostatic load,” Annals of the New York Academy of Sciences, vol. 1186, pp. 223–239, 2010.
[82]  T. E. Seeman, B. S. McEwen, J. W. Rowe, and B. H. Singer, “Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4770–4775, 2001.
[83]  M. E. Lachman and S. Agrigoroaei, “Promoting functional health in midlife and old age: long-term protective effects of control beliefs, social support, and physical exercise,” PLoS One, vol. 5, no. 10, Article ID e13297, 2010.
[84]  A. G. Mainous, C. J. Everett, V. A. Diaz et al., “Leukocyte telomere length and marital status among middle-aged adults,” Age and Ageing, vol. 40, no. 1, pp. 73–78, 2011.
[85]  E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004.
[86]  O. W. Wolkowitz, E. S. Epel, V. I. Reus, and S. H. Mellon, “Depression gets old fast: do stress and depression accelerate cell aging?” Depression and Anxiety, vol. 27, no. 4, pp. 327–338, 2010.
[87]  I. Manoli, S. Alesci, M. R. Blackman, Y. A. Su, O. M. Rennert, and G. P. Chrousos, “Mitochondria as key components of the stress response,” Trends in Endocrinology and Metabolism, vol. 18, no. 5, pp. 190–198, 2007.
[88]  P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003.
[89]  C. D. Berdanier, “Mitochondrial gene expression: Influence of nutrients and hormones,” Experimental Biology and Medicine, vol. 231, no. 10, pp. 1593–1601, 2006.
[90]  A. M. G. Psarra and C. E. Sekeris, “Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions,” Biochimica et Biophysica Acta, vol. 1787, no. 5, pp. 431–436, 2009.
[91]  A. M. G. Psarra, S. Solakidi, and C. E. Sekeris, “The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells,” Molecular and Cellular Endocrinology, vol. 246, no. 1-2, pp. 21–33, 2006.
[92]  V. Brower, “Mind-body research moves towards the mainstream. Mounting evidence for the role of the mind in disease and healing is leading to a greater acceptance of mind-body medicine,” EMBO Reports, vol. 7, no. 4, pp. 358–361, 2006.
[93]  S. J. H. Biddle, T. Gorely, and D. J. Stensel, “Health-enhancing physical activity and sedentary behaviour in children and adolescents,” Journal of Sports Sciences, vol. 22, no. 8, pp. 679–701, 2004.
[94]  J. Du, Y. Wang, R. Hunter et al., “Dynamic regulation of mitochondrial function by glucocorticoids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3543–3548, 2009.
[95]  C. M. Sabiston, J. Brunet, K. C. Kowalski, P. M. Wilson, D. E. Mack, and P. R. E. Crocker, “The role of body-related self-conscious emotions in motivating women's physical activity,” Journal of Sport and Exercise Psychology, vol. 32, no. 4, pp. 417–437, 2010.
[96]  B. Wold and L. Hendry, “Social and environmental factors associated with physical activity in young people,” in Young and Active? Young People and Health-enhancing Physical Activity: Evidence and Implications, S. J. H. Biddle, N. Cavill, and J. F. Sallis, Eds., pp. 119–132, Health Education Authority, London, UK, 1998.
[97]  C. M. Sablston and P. R.E. Crocker, “Exploring self-perceptions and social influences as correlates of adolescent leisure-time physical activity,” Journal of Sport and Exercise Psychology, vol. 30, no. 1, pp. 3–22, 2008.
[98]  F. Bonnet, K. Irving, J. L. Terra, P. Nony, F. Berthezène, and P. Moulin, “Depressive symptoms are associated with unhealthy lifestyles in hypertensive patients with the metabolic syndrome,” Journal of Hypertension, vol. 23, no. 3, pp. 611–617, 2005.
[99]  B. Roshanaei-Moghaddam, W. J. Katon, and J. Russo, “The longitudinal effects of depression on physical activity,” General Hospital Psychiatry, vol. 31, no. 4, pp. 306–315, 2009.
[100]  J. A. Pasco, L. J. Williams, F. N. Jacka et al., “Habitual physical activity and the risk for depressive and anxiety disorders among older men and women,” International Psychogeriatrics, vol. 23, pp. 292–298, 2011.
[101]  F. N. Jacka, J. A. Pasco, L. J. Williams et al., “Lower levels of physical activity in childhood associated with adult depression,” Journal of Science and Medicine in Sport, vol. 14, pp. 222–226, 2011.
[102]  E. Puterman, J. Lin, E. Blackburn, A. O'Donovan, N. Adler, and E. Epel, “The power of exercise: buffering the effect of chronic stress on telomere length,” PLoS One, vol. 5, no. 5, Article ID e10837, 2010.
[103]  F. C. Mooren, K. Volker, B. K. Pedersen, A. Schulz, and H. Teschemacher, “Inter- and intracellular signaling,” in Moolecular and Cellular Exercise Physiology, F. C. Mooren and K. Volker, Eds., Human Kinetics, Windsor, Canada, 2005.
[104]  B. K. Pedersen, “Exercise-induced myokines and their role in chronic diseases,” Brain, Behavior, and Immunity, vol. 25, no. 5, pp. 811–816, 2011.
[105]  D. Scully, “Physical exercise and psychological well being: a critical review,” British Journal of Sports Medicine, vol. 32, no. 2, pp. 111–120, 1998.
[106]  I. R. Lanza, D. K. Short, K. R. Short et al., “Endurance exercise as a countermeasure for aging,” Diabetes, vol. 57, no. 11, pp. 2933–2942, 2008.
[107]  A. Tsatsoulis and S. Fountoulakis, “The protective role of exercise on stress system dysregulation and comorbidities,” Annals of the New York Academy of Sciences, vol. 1083, pp. 196–213, 2006.
[108]  M. Picard, C. M. Sabiston, and J. K. McNamara, “The need for a trans-disciplinary, global health framework,” Journal of Alternative and Complementary Medicine, vol. 17, pp. 179–184, 2011.
[109]  V. L. Bengtson, D. Gans, N. Putney, and M. Silverstein, Handbook of Theories of Aging, Springer, New York, NY, USA, 2nd edition, 2009.
[110]  F. Kessel, P. L. Rosenfield, and N. B. Anderson, Interdisciplinary Research: Case Studies from Health and Social Science, Oxford University Press, New York, NY, USA, 2008.
[111]  B. Singer and C. D. Ryff, New Horizons in Health: An Integrative Approach, National Academy Press, Washington, DC, USA, 2001.
[112]  D. Cicchetti and S. L. Toth, “The past achievements and future promises of developmental psychopathology: the coming of age of a discipline,” Journal of Child Psychology and Psychiatry, vol. 50, no. 1-2, pp. 16–25, 2009.
[113]  L. A. Sroufe, “The concept of development in developmental psychopathology,” Child Development Perspectives, vol. 3, no. 3, pp. 178–183, 2009.
[114]  S. J. Lupien, B. S. McEwen, M. R. Gunnar, and C. Heim, “Effects of stress throughout the lifespan on the brain, behaviour and cognition,” Nature Reviews Neuroscience, vol. 10, no. 6, pp. 434–445, 2009.
[115]  B. S. McEwen, “Seminars in medicine of the Beth Israel Deaconess Medical Center: protective and damaging effects of stress mediators,” New England Journal of Medicine, vol. 338, no. 3, pp. 171–179, 1998.
[116]  R. P. Juster, B. S. McEwen, and S. J. Lupien, “Allostatic load biomarkers of chronic stress and impact on health and cognition,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 1, pp. 2–16, 2010.
[117]  M. J. Meaney and A. C. Ferguson-Smith, “Epigenetic regulation of the neural transcriptome: the meaning of the marks,” Nature Neuroscience, vol. 13, no. 11, pp. 1313–1318, 2010.
[118]  T.-Y. Zhang and M. J. Meaney, “Epigenetics and the environmental regulation of the genome and its function,” Annual Review of Psychology, vol. 61, pp. 439–466, 2010.
[119]  T. G. Dinan, J. Cryan, F. Shanahan, P. W.N. Keeling, and E. M.M. Quigley, “IBS: an epigenetic perspective,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 8, pp. 465–471, 2010.
[120]  J. M. Ordovás and C. E. Smith, “Epigenetics and cardiovascular disease,” Nature Reviews Cardiology, vol. 7, no. 9, pp. 510–519, 2010.
[121]  U. Mu?oz-Najar and J. M. Sedivy, “Epigenetic control of aging,” Antioxidants and Redox Signaling, vol. 14, no. 2, pp. 241–259, 2011.
[122]  A. Grolleau-Julius, D. Ray, and R. L. Yung, “The role of epigenetics in aging and autoimmunity,” Clinical Reviews in Allergy and Immunology, vol. 39, no. 1, pp. 42–50, 2010.
[123]  A. Portela and M. Esteller, “Epigenetic modifications and human disease,” Nature Biotechnology, vol. 28, no. 10, pp. 1057–1068, 2010.
[124]  R. Barrès, M. E. Osler, J. Yan et al., “Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density,” Cell Metabolism, vol. 10, no. 3, pp. 189–198, 2009.
[125]  R. Barres and J. R. Zierath, “DNA methylation in metabolic disorders,” American Journal of Clinical Nutrition, vol. 93, no. 4, pp. 897S–900S, 2011.
[126]  L. S. Shock, P. V. Thakkar, E. J. Peterson, R. G. Moran, and S. M. Taylor, “DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, pp. 3630–3635, 2011.
[127]  D. C. Wallace and W. Fan, “Energetics, epigenetics, mitochondrial genetics,” Mitochondrion, vol. 10, no. 1, pp. 12–31, 2010.
[128]  R. K. Naviaux, “Mitochondrial control of epigenetics,” Cancer Biology and Therapy, vol. 7, no. 8, pp. 1191–1193, 2008.
[129]  T. L. Jacobs, E. S. Epel, J. Lin et al., “Intensive meditation training, immune cell telomerase activity, and psychological mediators,” Psychoneuroendocrinology, vol. 36, no. 5, pp. 664–681, 2011.
[130]  Q. A. Soltow, D. P. Jones, and D. E. L. Promislow, “A network perspective on metabolism and aging,” Integrative and Comparative Biology, vol. 50, no. 5, pp. 844–854, 2010.
[131]  S. S. Knox, “From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer,” Cancer Cell International, vol. 10, article no. 11, 2010.
[132]  B. Singer, E. Friedman, T. Seeman, G. A. Fava, and C. D. Ryff, “Protective environments and health status: Cross-talk between human and animal studies,” Neurobiology of Aging, vol. 26, no. 1, supplement, pp. S113–S118, 2005.
[133]  C. D. Ryff, G. Dienberg Love, H. L. Urry et al., “Psychological well-being and ill-being: do they have distinct or mirrored biological correlates?” Psychotherapy and Psychosomatics, vol. 75, no. 2, pp. 85–95, 2006.
[134]  C. D. Ryff and B. H. Singer, “Social environments and the genetics of aging: Advancing knowledge of protective health mechanisms,” Journals of Gerontology. Series B, vol. 60, pp. 12–23, 2005.
[135]  T. E. Seeman, E. Crimmins, M. H. Huang et al., “Cumulative biological risk and socio-economic differences in mortality: MacArthur Studies of Successful Aging,” Social Science and Medicine, vol. 58, no. 10, pp. 1985–1997, 2004.
[136]  D. C. Stanziano, M. Whitehurst, P. Graham, and B. A. Roos, “A review of selected longitudinal studies on aging: past findings and future directions,” Journal of the American Geriatrics Society, vol. 58, no. 2, pp. S292–S297, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133