全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Aging and the Detection of Visual Errors in Scenes

DOI: 10.4061/2011/984694

Full-Text   Cite this paper   Add to My Lib

Abstract:

Young and older adults performed a visual error detection task in two experiments. In Experiment 1, errors and anomalies were embedded in large, complex visual scenes, and participants were to find them and describe the nature of the identified problems. Young adults found more errors than older adults, a finding unrelated to age differences in near visual acuity or time constraints. Experiment 2 replicated the age difference in error detection using simplified visual scenes containing fewer errors. Results are interpreted as reflecting older adults' decreased ability to form representations for novel information, even though the task did not require the creation of new episodic memories. 1. Aging and the Detection of Visual Errors in Scenes Relatively little research to date has tested age-related changes in error detection. Among the existing studies, some have examined young and older individuals’ abilities to identify errors that they committed themselves (e.g., [1–3]). While these studies provide very naturalistic tests of error detection, interpretation of the results is complicated because there are often age differences in error production. Other studies have tested the effects of aging on the detection of experimenter-provided errors in written language. Zabrucky and Moore [4] found no age differences in detecting different types of errors in text (including nonsense words, false information, and inconsistent information). Shafto [5] found that spelling errors in text were detected equally often by young and older adults, but that older adults were impaired relative to young adults in detecting errors of meaning (e.g., the word “sun” where the word “moon” is actually appropriate), apparently because the semantic context leads to miscomprehension of the presented word. MacKay et al. [6] found equivalent performance for young and older adults on a task requiring the detection of misspelled words. Shafto [7] demonstrated that older adults actually outperformed young adults on misspelling detection, a finding driven by older adults’ better ability to identify erroneous spellings of low-frequency items. Such tasks tap language processes, and it is not clear whether preserved error detection per se or language comprehension processes (which have been shown to be relatively stable in older adulthood; see, e.g., [8, 9]) account for the findings. Additional research has tested the detection of errors or anomalies introduced by an experimenter using nonlinguistic stimuli. Simons and Levin [10] tested “change blindness” by measuring how likely an observer

References

[1]  P. Rabbitt, “Age, IQ and awareness, and recall of errors,” Ergonomics, vol. 33, no. 10-11, pp. 1291–1305, 1990.
[2]  M. A. Shafto, “Orthographic error monitoring in older adults. (Doctoral dissertation, UCLA, 2002),” Dissertation Abstracts International, vol. 63, p. 1584, 2002.
[3]  D. Valencia-Laver, “Adult age differences in the production, detection, and repair of speech errors. (Doctoral dissertation, Claremont Graduate School, 1992),” Dissertation Abstracts International, vol. 53, p. 1626, 1992.
[4]  K. Zabrucky and D. Moore, “Effects of skill on standards used by younger and older adults to evaluate understanding,” Reading Psychology, vol. 12, pp. 147–158, 1991.
[5]  M. A. Shafto, “Older adults’ proofreading ability varies by error type and difficulty,” in Proceedings of the Psychonomic Society Meeting, Minneapolis, Minn, USA, November 2004.
[6]  D. G. MacKay, L. Abrams, and M. J. Pedroza, “Aging on the input versus output side: theoretical implications of age- linked asymmetries between detecting versus retrieving orthographic information,” Psychology and Aging, vol. 14, no. 1, pp. 3–17, 1999.
[7]  M. A. Shafto, “Orthographic error monitoring in old age: lexical and sublexical availability during perception and production,” Psychology and Aging, vol. 25, no. 4, pp. 991–1001, 2010.
[8]  D. M. Burke, D. G. MacKay, and L. E. James, “Theoretical approaches to language and aging,” in Models of Cognitive Aging, T. J. Perfect and E. A. Maylor, Eds., pp. 204–237, Oxford University Press, Oxford, UK, 2000.
[9]  D. M. Burke and M. A. Shafto, “Language and aging,” in The handbook of Aging and Cognition, F. I. M. Craik and T. A. Salthouse, Eds., pp. 373–443, Psychology Press, New York, NY, USA, 2008.
[10]  D. J. Simons and D. T. Levin, “Failure to detect changes to people during a real-world interaction,” Psychonomic Bulletin & Review, vol. 5, no. 4, pp. 644–649, 1998.
[11]  H. Tajfel, “Social psychology of intergroup relations,” Annual Review of Psychology, vol. 33, pp. 1–39, 1982.
[12]  H. L. Pringle, D. E. Irwin, A. F. Kramer, and P. Atchley, “The role of attentional breadth in perceptual change detection,” Psychonomic Bulletin and Review, vol. 8, no. 1, pp. 89–95, 2001.
[13]  L. L. Veiel, M. Storandt, and R. A. Abrams, “Visual search for change in older adults,” Psychology and Aging, vol. 21, no. 4, pp. 754–762, 2006.
[14]  M. C. Costello, D. J. Madden, S. R. Mitroff, and W. L. Whiting, “Age-related decline of visual processing components in change detection,” Psychology and Aging, vol. 25, no. 2, pp. 356–368, 2010.
[15]  L. L. Light, “Memory and aging: four hypotheses in search of data,” Annual Review of Psychology, vol. 42, no. 1, pp. 333–376, 1991.
[16]  D. G. MacKay and D. M. Burke, “Cognition and aging: a theory of new learning and the use of old connections,” in Aging and Cognition: Knowledge Organization and Utilization, T. M. Hess, Ed., North-Holland, Amsterdam, The Netherlands, 1990.
[17]  B. Hommel, K. Z. H. Li, and S. C. Li, “Visual search across the life span,” Developmental Psychology, vol. 40, no. 4, pp. 545–558, 2004.
[18]  D. J. Plude and W. J. Hoyer, “Adult age differences in visual search as a function of stimulus mapping and processing load,” Journals of Gerontology, vol. 36, no. 5, pp. 598–604, 1981.
[19]  M. Naveh-Benjamin, “Adult age differences in memory performance: tests of an associative deficit hypothesis,” Journal of Experimental Psychology, vol. 26, no. 5, pp. 1170–1187, 2000.
[20]  U. J. Bayen, M. P. Phelps, and J. Spaniol, “Age-related differences in the use of contextual information in recognition memory: a global matching approach,” Journals of Gerontology B, vol. 55, no. 3, pp. P131–P141, 2000.
[21]  B. L. Chalfonte and M. K. Johnson, “Feature memory and binding in young and older adults,” Memory and Cognition, vol. 24, no. 4, pp. 403–416, 1996.
[22]  L. E. James and D. G. MacKay, “New age-linked asymmetries: aging and the processing of familiar versus novel language on the input versus output side,” Psychology and Aging, vol. 22, no. 1, pp. 94–103, 2007.
[23]  D. G. MacKay and L. E. James, “Visual cognition in amnesic H.M.: selective deficits on the What's-Wrong-Here and Hidden-Figure tasks,” Journal of Clinical and Experimental Neuropsychology, vol. 31, no. 7, pp. 769–789, 2009.
[24]  D. G. MacKay, M. D. Miller, and S. P. Schuster, “Repetition blindness and aging: evidence for a binding deficit involving a single, theoretically specified connection,” Psychology and Aging, vol. 9, no. 2, pp. 251–258, 1994.
[25]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini mental state: a practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[26]  B. A. Schneider and M. K. Pichora-Fuller, “Implications of perceptual deterioration for cognitive aging research,” in Handbook of Aging and Cognition, F. I. M. Craik and T. A. Salthouse, Eds., pp. 155–220, Lawrence Erlbaum Associates, Mahwah, NJ, USA, 2000.
[27]  K. Burton-Danner, C. Owsley, and G. R. Jackson, “Aging and feature search: the effect of search area,” Experimental Aging Research, vol. 27, no. 1, pp. 1–18, 2001.
[28]  G. Hein and T. Schubert, “Aging and input processing in dual-task situations,” Psychology and Aging, vol. 19, no. 3, pp. 416–432, 2004.
[29]  H. Basowitz and S. J. Korchin, “Age differences in the perception of closure,” Journal of Abnormal and Social Psychology, vol. 54, no. 1, pp. 93–97, 1957.
[30]  A. Soldan, H. J. Hilton, L. A. Cooper, and Y. Stern, “Priming of familiar and unfamiliar visual objects over delays in young and older adults,” Psychology and Aging, vol. 24, no. 1, pp. 93–104, 2009.
[31]  J. Myerson, S. Hale, D. Wagstaff, L. W. Poon, and G. A. Smith, “The information-loss model: a mathematical theory of age-related cognitive slowing,” Psychological Review, vol. 97, no. 4, pp. 475–487, 1990.
[32]  T. A. Salthouse, “The processing-speed theory of adult age differences in cognition,” Psychological Review, vol. 103, no. 3, pp. 403–428, 1996.
[33]  U. Lindenberger and P. B. Baltes, “Sensory functioning and intelligence in old age: a strong connection,” Psychology and Aging, vol. 9, no. 3, pp. 339–355, 1994.
[34]  L. Hasher and R. T. Zacks, “Working memory, comprehension, and aging: a review and a new view,” in The Psychology of Learning and Motivation, G. H. Bower, Ed., vol. 22, pp. 193–225, Academic Press, San Diego, Calif, USA, 1988.
[35]  D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: the problems of older drivers,” Journals of Gerontology, vol. 47, no. 1, pp. P27–34, 1992.
[36]  D. G. MacKay, “Awareness and error detection: new theories and research paradigms,” Consciousness and Cognition, vol. 1, no. 3, pp. 199–225, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133