Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion. 1. Introduction Magnetic resonance imaging (MRI) is now widely used in the diagnosis of diseases by doctors and is particularly useful for scanning images of the brain and detecting cerebrovascular disorders. White matter hyperintensities (WMHs) are a common finding in elderly people which are associated with vascular risk factors and an increased risk of decline in cognitive and motor function [1]. A number of methods have been used to quantify the hyperintensities to correlate to clinical data such as visual ratings, volumetric measuring, and WMHs pattern [2–6]. An investigation with the LADIS study cohort found that volumetric measurement was more sensitive than visual rating to detect differences in WMHs between groups with versus without memory symptoms although both volumetric measurement and visual rating detected differences in WMHs relating to age and gait disturbance [7]. Currently, there is no accepted gold standard for a fully automated WMHs segmentation program. The SPM package (http://www.fil.ion.ucl.ac.uk/spm/software/) has a widely used segmentation tool which classes brain tissue into grey, white matter, and CSF, using a combination of image intensity and a priori knowledge regarding distribution of tissue types. The default does not include information about WMHs, and these can be misclassified as grey matter [8]. Adding information regarding the a priori distribution of WMHs may help to improve the segmentation of WMHs in SPM. The study aims to investigate the ability of SPM to segment WMHs from (a) T1 weighted and (b) T1 + FLAIR images using a priori information about WMHs distribution. Results will be compared to manual segmentation of WMHs from FLAIR images, an in-house WMHs segmentation program [9], and a different
References
[1]
D. Inzitari, M. Simoni, G. Pracucci et al., “Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes—the LADIS study,” Archives of Internal Medicine, vol. 167, no. 1, pp. 81–88, 2007.
[2]
P. Scheltens, F. Barkhof, D. Leys et al., “A semiquantitative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging,” Journal of the Neurological Sciences, vol. 114, no. 1, pp. 7–12, 1993.
[3]
L.-O. Wahlund, F. Barkhof, F. Fazekas et al., “A new rating scale for age-related white matter changes applicable to MRI and CT,” Stroke, vol. 32, no. 6, pp. 1318–1322, 2001.
[4]
A. A. Gouw, W. M. van der Flier, E. C. W. van Straaten et al., “Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression,” Cerebrovascular Diseases, vol. 25, no. 3, pp. 247–253, 2008.
[5]
C. R. Jack, P. C. O'Brien, D. W. Rettman et al., “FLAIR histogram segmentation for measurement of leukoaraiosis volume,” Journal of Magnetic Resonance Imaging, vol. 14, no. 6, pp. 668–676, 2001.
[6]
M. Wu, C. Rosano, M. Butters et al., “A fully automated method for quantifying and localizing white matter hyperintensities on MR images,” Psychiatry Research, vol. 148, no. 2-3, pp. 133–142, 2006.
[7]
E. C. van Straaten, F. Fazekas, E. Rostrup et al., “Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study,” Stroke, vol. 37, no. 3, pp. 836–840, 2006.
[8]
N. Levy-Cooperman, J. Ramirez, N. J. Lobaugh, and S. E. Black, “Misclassified tissue volumes in Alzheimer disease patients with white matter hyperintensities: importance of lesion segmentation procedures for volumetric analysis,” Stroke, vol. 39, no. 4, pp. 1134–1141, 2008.
[9]
M. J. Firbank, T. Minett, and J. T. O'Brien, “Changes in DWI and MRS associated with white matter hyperintensities in elderly subjects,” Neurology, vol. 61, no. 7, pp. 950–954, 2003.
[10]
M. J. Firbank, A. M. Blamire, A. Teodorczuk et al., “High resolution imaging of the medial temporal lobe in Alzheimer's disease and dementia with Lewy bodies,” Journal of Alzheimer's Disease, vol. 21, no. 4, pp. 1129–1140, 2010.
[11]
G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984.
[12]
I. G. McKeith, D. W. Dickson, J. Lowe et al., “Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium,” Neurology, vol. 65, no. 12, pp. 1863–1872, 2005.
[13]
J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage, vol. 26, no. 3, pp. 839–851, 2005.