全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic Risk Factors for Longitudinal Changes in Structural MRI in Former Organolead Workers

DOI: 10.4061/2011/362189

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study examined associations between polymorphisms in three genes, apolipoprotein E (APOE), angiotensin converting enzyme (ACE), and vitamin D receptor (VDR), and longitudinal change in brain volumes and white matter lesions (WML) as well as effect modification by cardiovascular factors and tibia lead concentrations. Two MRIs, an average of 5 years apart, were obtained for 317 former organolead workers and 45 population-based controls. Both regions-of-interest and voxel-wise analyses were conducted. APOE and genotypes were associated with less decline in white matter volumes. There was some evidence of interaction between genetic polymorphisms and cardiovascular risk factors (ACE and high-density lipoprotein; VDR and diabetes) on brain volume decline. The VDR FokI ff genotype was associated with an increase in WML (no association for APOE or ACE). This study expands our understanding of how genetic precursors of dementia and cardiovascular diseases are related to changes in brain structure. 1. Introduction Brain volume loss [1] and increase in white matter lesions (WML) [2] are common consequences of aging, and both are related to worse cognitive function and risk of dementia [3–6]. Little is currently known about the genetic determinants of age-related brain volume loss or increase in WML or how genes may modify the effect of other environmental risk factors for these outcomes. Certain genetic polymorphisms associated with a greater risk for neurodegenerative diseases such as Alzheimer’s disease (AD) in later life [7] are potential candidates. The apolipoprotein E (APOE) gene is the best-documented genetic risk factor for AD, with the ε4 allele significantly increasing the risk for AD [8–10] and cognitive decline [11]. The angiotensin converting enzyme (ACE) gene is associated with AD [12, 13] and WML [14]. Certain vitamin D receptor (VDR) gene polymorphisms have also been associated with increased risk of AD [15], cardiovascular disease, and diabetes [16, 17], and these, in turn, have been linked to WMLs [18, 19]. These genes are, therefore, strong candidates for evaluation of genetic determinants of brain volume loss and increased WML in living persons through the use of neuroimaging technology. Furthermore, because it is hypothesized that exposure to certain external agents may induce upregulation of neurodegenerative disease-associated genes [20], it is appropriate to also examine the effect of these genes in the light of gene by environment interaction. Specifically, well-known risk factors for neurodegenerative disease, including

References

[1]  S. M. Resnick, D. L. Pham, M. A. Kraut, A. B. Zonderman, and C. Davatzikos, “Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain,” Journal of Neuroscience, vol. 23, no. 8, pp. 3295–3301, 2003.
[2]  W. T. Longstreth Jr., T. A. Manolio, A. Arnold et al., “Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people: the cardiovascular health study,” Stroke, vol. 27, no. 8, pp. 1274–1282, 1996.
[3]  B. S. Schwartz, S. Chen, B. Caffo et al., “Relations of brain volumes with cognitive function in males 45 years and older with past lead exposure,” NeuroImage, vol. 37, no. 2, pp. 633–641, 2007.
[4]  D. Erten-Lyons, D. Howieson, M. M. Moore et al., “Brain volume loss in MCI predicts dementia,” Neurology, vol. 66, no. 2, pp. 233–235, 2006.
[5]  J. C. De Groot, F. E. De Leeuw, M. Oudkerk et al., “Cerebral white matter lesions and cognitive function: the Rotterdam scan study,” Annals of Neurology, vol. 47, no. 2, pp. 145–151, 2000.
[6]  P. Sheltens, F. Barkhof, J. Valk et al., “White matter lesions on magnetic resonance imaging in clinically diagnosed Alzheimer's disease. Evidence for heterogeneity,” Brain, vol. 115, no. 3, pp. 735–748, 1992.
[7]  D. Avramopoulos, “Genetics of Alzheimer's disease: recent advances,” Genome Medicine, vol. 1, no. 3, article 34, 2009.
[8]  E. H. Corder, A. M. Saunders, W. J. Strittmatter et al., “Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families,” Science, vol. 261, no. 5123, pp. 921–923, 1993.
[9]  A. M. Saunders, W. J. Strittmatter, D. Schmechel et al., “Association of apolipoprotein E allele epsilon4 with late-onset familial and sporadic Alzheimer's disease,” Neurology, vol. 43, no. 8, pp. 1467–1472, 1993.
[10]  L. A. Farrer, L. A. Cupples, J. L. Haines et al., “Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis,” Journal of the American Medical Association, vol. 278, no. 16, pp. 1349–1356, 1997.
[11]  G. W. Small, “The pathogenesis of Alzheimer's disease,” Journal of Clinical Psychiatry, vol. 59, supplement 9, pp. 7–14, 1998.
[12]  D. J. Lehmann, M. Cortina-Borja, D. R. Warden et al., “Large meta-analysis establishes the ACE insertion-deletion polymorphism as a marker of Alzheimer's disease,” American Journal of Epidemiology, vol. 162, no. 4, pp. 305–317, 2005.
[13]  Y. Narain, A. Yip, T. Murphy et al., “The ACE gene and Alzheimer's disease susceptibility,” Journal of Medical Genetics, vol. 37, no. 9, pp. 695–697, 2000.
[14]  J. Tian, J. Shi, K. Bailey et al., “A polymorphism in the angiotensin 1-converting enzyme gene is associated with damage to cerebral cortical white matter in Alzheimer's disease,” Neuroscience Letters, vol. 354, no. 2, pp. 103–106, 2004.
[15]  D. Gezen-Ak, E. Dursun, T. Ertan, et al., “Association between vitamin D receptor gene polymorphism and Alzheimer's disease,” Tohoku Journal of Experimental Medicine, vol. 212, no. 3, pp. 275–282, 2007.
[16]  J. M. Valdivielso and E. Fernandez, “Vitamin D receptor polymorphisms and diseases,” Clinica Chimica Acta, vol. 371, no. 1-2, pp. 1–12, 2006.
[17]  A. G. Uitterlinden, Y. Fang, J. B. J. Van Meurs, H. A. P. Pols, and J. P. T. M. Van Leeuwen, “Genetics and biology of vitamin D receptor polymorphisms,” Gene, vol. 338, no. 2, pp. 143–156, 2004.
[18]  C. Enzinger, F. Fazekas, S. Ropele, and R. Schmidt, “Progression of cerebral white matter lesions—clinical and radiological considerations,” Journal of the Neurological Sciences, vol. 257, no. 1-2, pp. 5–10, 2007.
[19]  L. J. Launer, “Epidemiology of white matter lesions,” Topics in Magnetic Resonance Imaging, vol. 15, no. 6, pp. 365–367, 2004.
[20]  D. K. Lahiri, B. Maloney, and N. H. Zawia, “The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases,” Molecular Psychiatry, vol. 14, no. 11, pp. 992–1003, 2009.
[21]  F. E. De Leeuw, F. Richard, J. C. De Groot et al., “Interaction between hypertension, apoE, and cerebral white matter lesions,” Stroke, vol. 35, no. 5, pp. 1057–1060, 2004.
[22]  L. Bronge, S. E. Fernaeus, M. Blomberg et al., “White matter lesions in Alzheimer patients are influenced by apolipoprotein E genotype,” Dementia and Geriatric Cognitive Disorders, vol. 10, no. 2, pp. 89–96, 1999.
[23]  H. A. Wishart, A. J. Saykin, T. W. McAllister et al., “Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele,” Neurology, vol. 67, no. 7, pp. 1221–1224, 2006.
[24]  N. Filippini, M. Zarei, C. F. Beckmann et al., “Regional atrophy of transcallosal prefrontal connections in cognitively normal APOE epsilon4 carriers,” Journal of Magnetic Resonance Imaging, vol. 29, no. 5, pp. 1021–1026, 2009.
[25]  N. Cherbuin, K. J. Anstey, P. S. Sachdev et al., “Total and regional gray matter volume is not related to status in a community sample of middle-aged individuals,” Journals of Gerontology Series A, vol. 63, no. 5, pp. 501–504, 2008.
[26]  H. Schmidt, R. Schmidt, F. Fazekas et al., “Apolipoprotein E e4 allele in the normal elderly: neuropsychologic and brain MRI correlates,” Clinical Genetics, vol. 50, no. 5, pp. 293–299, 1996.
[27]  C. Geroldi, M. Pihlajam?ki, M. P. Laakso et al., “APOE-epsilon4 is associated with less frontal and more medial temporal lobe atrophy in AD,” Neurology, vol. 53, no. 8, pp. 1825–1832, 1999.
[28]  M. Hashimoto, M. Yasuda, S. Tanimukai et al., “Apolipoprotein E epsilon 4 and the pattern of regional brain atrophy in Alzheimer's disease,” Neurology, vol. 57, no. 8, pp. 1461–1466, 2001.
[29]  M. Yasuda, E. Mori, H. Kitagaki et al., “Apolipoprotein E epsilon 4 allele and whole brain atrophy in late-onset Alzheimer's disease,” American Journal of Psychiatry, vol. 155, no. 6, pp. 779–784, 1998.
[30]  S. D. Moffat, C. A. Szekely, A. B. Zonderman, N. J. Kabani, and S. M. Resnick, “Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype,” Neurology, vol. 55, no. 1, pp. 134–136, 2000.
[31]  C. Enzinger, F. Fazekas, P. M. Matthews et al., “Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects,” Neurology, vol. 64, no. 10, pp. 1704–1711, 2005.
[32]  B. S. Schwartz, W. F. Stewart, K. I. Bolla et al., “Past adult lead exposure is associated with longitudinal decline in cognitive function,” Neurology, vol. 55, no. 8, pp. 1144–1150, 2000.
[33]  W. F. Stewart, B. S. Schwartz, D. Simon, K. I. Bolla, A. C. Todd, and J. Links, “Neurobehavioral function and tibial and chelatable lead levels in 543 former organolead workers,” Neurology, vol. 52, no. 8, pp. 1610–1617, 1999.
[34]  W. F. Stewart, B. S. Schwartz, C. Davatzikos et al., “Past adult lead exposure is linked to neurodegeneration measured by brain MRI,” Neurology, vol. 66, no. 10, pp. 1476–1484, 2006.
[35]  B. S. Schwartz, K. I. Bolla, W Stewart, D. P. Ford, J. Agnew, and H. Frumkin, “Decrements in Neurobehavioral Performance Associated with Mixed Exposure to Organic and Inorganic Lead,” American Journal of Epidemiology, vol. 137, no. 9, pp. 1006–1021, 1993.
[36]  B. S. Schwartz, B. Caffo, W. F. Stewart et al., “Evaluation of cumulative lead dose and longitudinal changes in structural magnetic resonance imaging in former organolead workers,” Journal of Occupational and Environmental Medicine, vol. 52, no. 4, pp. 407–414, 2010.
[37]  T. A. Glass, M. D. Rasmussen, and B. S. Schwartz, “Neighborhoods and obesity in older adults: the Baltimore Memory Study,” American Journal of Preventive Medicine, vol. 31, no. 6, pp. 455–463, 2006.
[38]  B. S. Schwartz, T. A. Glass, K. I. Bolla et al., “Disparities in cognitive functioning by race/ethnicity in the Baltimore Memory Study,” Environmental Health Perspectives, vol. 112, no. 3, pp. 314–320, 2004.
[39]  J. E. Hixson and D. T. Vernier, “Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI,” Journal of Lipid Research, vol. 31, no. 3, pp. 545–548, 1990.
[40]  R. Nadif, A. Jedlicka, M. Mintz, J.-P. Bertrand, S. Kleeberger, and F. Kauffmann, “Effect of TNF and LTA polymorphisms on biological markers of response to oxidative stimuli in coal miners: a model of gene-environment interaction,” Journal of Medical Genetics, vol. 40, no. 2, pp. 96–103, 2003.
[41]  J. H. Schafer, T. A. Glass, K. I. Bolla, M. Mintz, A. E. Jedlicka, and B. S. Schwartz, “Homocysteine and cognitive function in a population-based study of older adults,” Journal of the American Geriatrics Society, vol. 53, no. 3, pp. 381–388, 2005.
[42]  B. Rigat, C. Hubert, P. Corvol, and F. Soubrier, “PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1),” Nucleic Acids Research, vol. 20, no. 6, p. 1433, 1992.
[43]  H. H. Alphs, B. S. Schwartz, W. F. Stewart, and D. M. Yousem, “Findings on brain MRI from research studies of occupational exposure to known neurotoxicants,” American Journal of Roentgenology, vol. 187, no. 4, pp. 1043–1047, 2006.
[44]  L. P. Fried, N. O. Borhani, P. Enright et al., “The cardiovascular health study: design and rationale,” Annals of Epidemiology, vol. 1, no. 3, pp. 263–276, 1991.
[45]  W. T. Longstreth Jr., C. Bernick, T. A. Manolio, N. Bryan, C. A. Jungreis, and T. R. Price, “Lacunar infarcts defined by magnetic resonance imaging of 3660 elderly people: the cardiovascular health study,” Archives of Neurology, vol. 55, no. 9, pp. 1217–1225, 1998.
[46]  A. F. Goldszal, C. Davatzikos, D. L. Pham, M. X. H. Yan, R. N. Bryan, and S. M. Resnick, “An image-processing system for qualitative and quantitative volumetric analysis of brain images,” Journal of Computer Assisted Tomography, vol. 22, no. 5, pp. 827–837, 1998.
[47]  N. J. Kabani, D. J. MacDonald, C. J. Holmes, and A. C. Evans, “3D anatomical atlas of the human brain,” NeuroImage, vol. 7, no. 4, p. S717, 1998.
[48]  D. Shen, “4D image warping for measurement of longitudinal brain changes,” in Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging, pp. 904–907, Arlington, Va, USA, April 2004.
[49]  N. C. Andreasen, R. Rajarethinam, T. Cizadlo et al., “Automatic atlas-based volume estimation of human brain regions from MR images,” Journal of Computer Assisted Tomography, vol. 20, no. 1, pp. 98–106, 1996.
[50]  S. M. Resnick, A. F. Goldszal, C. Davatzikos et al., “One-year age changes in MRI brain volumes in older adults,” Cerebral Cortex, vol. 10, no. 5, pp. 464–472, 2000.
[51]  Z. Xue, D. Shen, and C. Davatzikos, “CLASSIC: consistent longitudinal alignment and segmentation for serial image computing,” NeuroImage, vol. 30, no. 2, pp. 388–399, 2006.
[52]  C. Rorden and M. Brett, “Stereotaxic display of brain lesions,” Behavioural Neurology, vol. 12, no. 4, pp. 191–200, 2000.
[53]  O. Godin, C. Tzourio, P. Maillard, A. Alpérovitch, B. Mazoyer, and C. Dufouil, “Apolipoprotein e genotype is related to progression of white matter lesion load,” Stroke, vol. 40, no. 10, pp. 3186–3190, 2009.
[54]  K. Sleegers, T. Den Heijer, E. J. Van Dijk et al., “ACE gene is associated with Alzheimer's disease and atrophy of hippocampus and amygdala,” Neurobiology of Aging, vol. 26, no. 8, pp. 1153–1159, 2005.
[55]  D. Bartrés-Faz, C. Junqué, I. C. Clemente et al., “MRI and genetic correlates of cognitive function in elders with memory impairment,” Neurobiology of Aging, vol. 22, no. 3, pp. 449–459, 2001.
[56]  L. Paternoster, W. Chen, and C. L. M. Sudlow, “Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19 000 subjects,” Stroke, vol. 40, no. 6, pp. 2020–2026, 2009.
[57]  L. T. Grinberg and D. R. Thal, “Vascular pathology in the aged human brain,” Acta Neuropathologica, vol. 119, no. 3, pp. 277–290, 2010.
[58]  E. R. Tuminello and S. D. Han, “The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 726197, 12 pages, 2011.
[59]  N. L. Marchant, S. L. King, N. Tabet, and J. M. Rusted, “Positive effects of cholinergic stimulation favor young APOE epsilon4 carriers,” Neuropsychopharmacology, vol. 35, no. 5, pp. 1090–1096, 2010.
[60]  K. Theppeang, T. A. Glass, K. Bandeen-Roche, A. C. Todd, C. A. Rohde, and B. S. Schwartz, “Gender and race/ethnicity differences in lead dose biomarkers,” American Journal of Public Health, vol. 98, no. 7, pp. 1248–1255, 2008.
[61]  W. F. Stewart and B. S. Schwartz, “Effects of lead on the adult brain: a 15-year exploration,” American Journal of Industrial Medicine, vol. 50, no. 10, pp. 729–739, 2007.
[62]  J. L. Pirkle, D. J. Brody, E. W. Gunter et al., “The decline in blood lead levels in the United States: The National Health and Nutrition Examination Surveys (NHANES),” Journal of the American Medical Association, vol. 272, no. 4, pp. 284–291, 1994.
[63]  M. Prince, “Is chronic low-level lead exposure in early life an etiologic factor in Alzheimer's disease?” Epidemiology, vol. 9, no. 6, pp. 618–621, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133