全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Urban Built Environment and Mobility in Older Adults: A Comprehensive Review

DOI: 10.4061/2011/816106

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mobility restrictions in older adults are common and increase the likelihood of negative health outcomes and premature mortality. The effect of built environment on mobility in older populations, among whom environmental effects may be strongest, is the focus of a growing body of the literature. We reviewed recent research (1990–2010) that examined associations of objective measures of the built environment with mobility and disability in adults aged 60 years or older. Seventeen empirical articles were identified. The existing literature suggests that mobility is associated with higher street connectivity leading to shorter pedestrian distances, street and traffic conditions such as safety measures, and proximity to destinations such as retail establishments, parks, and green spaces. Existing research is limited by differences in exposure and outcome assessments and use of cross-sectional study designs. This research could lead to policy interventions that allow older adults to live more healthy and active lives in their communities. 1. Introduction Mobility limitations are defined by impairment or dependence in movement and affect between one third and one half of adults aged 65 or older [1]. Mobility limitations can affect an individual’s health through a number of pathways. Lack of physical activity in older individuals can lead to loss of muscle mass (sarcopenia), loss of bone density (osteoporosis), and an increase in fat mass (obesity) [2, 3]. Isolation and loss of social ties resulting from reduced mobility can lead to depression and other adverse mental health outcomes [4]. A lack of access to resources such as fresh foods and medical care which can result from limited mobility can also have negative impacts on health [5]. Individuals with mobility limitations are also at higher risk of health service utilization [6–8] and institutionalization [6, 9, 10]. Ultimately, further frailty and disability and an increased risk of premature mortality can result from restricted mobility [1, 11]. Methods of assessing mobility limitations vary [1]. In assessment of mobility, it is important to distinguish between capacity to function—what an individual could do—and enacted function—what an individual does do [12]. In this way, assessments of an individual’s walking behavior represent an enacted form of mobility while questions that assess an individual’s perception of their ability represent functional capacity. Both may be relevant measures of mobility. Mobility restrictions are not typically the result of a single cause, but arise from an interaction of

References

[1]  S. C. Webber, M. M. Porter, and V. H. Menec, “Mobility in older adults: a comprehensive framework,” The Gerontologist, vol. 50, no. 4, pp. 443–450, 2010.
[2]  L. DiPietro, “Physical activity in aging: changes in patterns and their relationship to health and function,” The Journals of Gerontology. Series A, vol. 56, no. 2, pp. 13–22, 2001.
[3]  L. Frank, J. Kerr, D. Rosenberg, and A. King, “Healthy aging and where you live: community design relationships with physical activity and body weight in older Americans,” Journal of Physical Activity and Health, vol. 7, supplement 1, pp. S82–S90, 2010.
[4]  P. Lampinen and E. Heikkinen, “Reduced mobility and physical activity as predictors of depressive symptoms among community-dwelling older adults: an eight-year follow-up study,” Aging Clinical and Experimental Research, vol. 15, no. 3, pp. 205–211, 2003.
[5]  T. A. Glass, J. L. Balfour, et al., “Neighborhoods, aging, and functional limitations,” in Neighborhoods and Health, I. Kawachi, L. F. Berkman, et al., Eds., pp. 303–334, Oxford University Press, New York, NY, USA, 2003.
[6]  M. E. Williams, “Identifying the older person likely to require long-term care services,” Journal of the American Geriatrics Society, vol. 35, no. 8, pp. 761–766, 1987.
[7]  B. W. Penninx, L. Ferrucci, S. G. Leveille, T. Rantanen, M. Pahor, and J. M. Guralnik, “Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization,” The Journals of Gerontology. Series A, vol. 55, no. 11, pp. M691–M697, 2000.
[8]  J. B. Kuriansky, B. J. Gurland, and J. L. Fleiss, “The assessment of self care capacity in geriatric psychiatric patients by objective and subjective methods,” Journal of Clinical Psychology, vol. 32, no. 1, pp. 95–102, 1976.
[9]  J. M. Guralnik, E. M. Simonsick, L. Ferrucci et al., “A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission,” Journal of Gerontology, vol. 49, no. 2, pp. M85–M94, 1994.
[10]  D. B. Reuben, A. L. Siu, and S. Kimpau, “The predictive validity of self-report and performance-based measures of function and health,” The Journal of Gerontology, vol. 47, no. 4, pp. M106–M110, 1992.
[11]  L. P. Fried and J. M. Guralnik, “Disability in older adults: evidence regarding significance, etiology, and risk,” Journal of the American Geriatrics Society, vol. 45, no. 1, pp. 92–100, 1997.
[12]  T. A. Glass, “Conjugating the “tenses” of function: discordance among hypothetical, experimental, and enacted function in older adults,” The Gerontologist, vol. 38, no. 1, pp. 101–112, 1998.
[13]  A. E. Patla and A. Shumway-Cook, “Dimensions of mobility: defining the complexity and difficulty associated with community mobility,” Journal of Aging and Physical Activity, vol. 7, no. 1, pp. 7–19, 1999.
[14]  M. Lawton, “Competence, environmental press, and the adaptation of older people,” in Aging and the Environment, M. Lawton, P. Windley, and T. Byerts, Eds., Springer, New York, NY, USA, 1982.
[15]  M. P. Lawton, “Environment and other determinants of well-being in older people,” The Gerontologist, vol. 23, no. 4, pp. 349–357, 1983.
[16]  L. M. Verbrugge and A. M. Jette, “The disablement process,” Social Science and Medicine, vol. 38, no. 1, pp. 1–14, 1994.
[17]  World Health Organization, International Classification of Functioning, Disability, and Health: ICF Short Version, vol. iii, World Health Organization, Geneva, Switzerland, 2001.
[18]  L. D. Frank, P. O. Engelke, and T. L. Schmid, Health and Community Design: The Impact of the Built Environment on Physical Activity, Island Press, Washington, DC, USA, 2003.
[19]  I. H. Yen, Y. L. Michael, and L. Perdue, “Neighborhood environment in studies of health of older adults: a systematic review,” American Journal of Preventive Medicine, vol. 37, no. 5, pp. 455–463, 2009.
[20]  P. Clarke and E. R. Nieuwenhuijsen, “Environments for healthy ageing: a critical review,” Maturitas, vol. 64, no. 1, pp. 14–19, 2009.
[21]  T. Sugiyama and C. W. Thompson, “Outdoor environments, activity and the well-being of older people: conceptualising environmental support,” Environment and Planning, vol. 39, no. 8, pp. 1943–1960, 2007.
[22]  A. Renalds, T. H. Smith, and P. J. Hale, “A systematic review of built environment and health,” Family and Community Health, vol. 33, no. 1, pp. 68–78, 2010.
[23]  S. Macintyre, A. Ellaway, and S. Cummins, “Place effects on health: how can we conceptualise, operationalise and measure them?” Social Science and Medicine, vol. 55, no. 1, pp. 125–139, 2002.
[24]  I. Kawachi and L. F. Berkman, Neighborhoods and Health, Oxford University Press, New York, NY, USA, 2003.
[25]  P. Clarke, J. A. Ailshire, and P. Lantz, “Urban built environments and trajectories of mobility disability: findings from a national sample of community-dwelling American adults (1986–2001),” Social Science and Medicine, vol. 69, no. 6, pp. 964–970, 2009.
[26]  S. C. Brown, C. A. Mason, T. Perrino et al., “Built environment and physical functioning in hispanic elders: the role of ‘eyes on the street’,” Environmental Health Perspectives, vol. 116, no. 10, pp. 1300–1307, 2008.
[27]  I. M. Lee, R. Ewing, and H. D. Sesso, “The built environment and physical activity levels. The Harvard alumni health study,” American Journal of Preventive Medicine, vol. 37, no. 4, pp. 293–298, 2009.
[28]  Y. L. Michael, L. A. Perdue, E. S. Orwoll, M. L. Stefanick, and L. M. Marshall, “Physical activity resources and changes in walking in a cohort of older men,” American Journal of Public Health, vol. 100, no. 4, pp. 654–660, 2010.
[29]  L. F. Gomez, D. C. Parra, D. Buchner et al., “Built environment attributes and walking patterns among the elderly population in Bogota,” American Journal of Preventive Medicine, vol. 38, no. 6, pp. 592–599, 2010.
[30]  P. K. Patterson and N. J. Chapman, “Urban form and older residents' service use, walking, driving, quality of life, and neighborhood satisfaction,” American Journal of Health Promotion, vol. 19, no. 1, pp. 45–52, 2004.
[31]  C. L. Nagel, N. E. Carlson, M. Bosworth, and Y. L. Michael, “The relation between neighborhood built environment and walking activity among older adults,” American Journal of Epidemiology, vol. 168, no. 4, pp. 461–468, 2008.
[32]  Y. Michael, T. Beard, D. Choi, S. Farquhar, and N. Carlson, “Measuring the influence of built neighborhood environments on walking in older adults,” Journal of Aging and Physical Activity, vol. 14, no. 3, pp. 302–312, 2006.
[33]  F. Li, K. J. Fisher, R. C. Brownson, and M. Bosworth, “Multilevel modelling of built environment characteristics related to neighbourhood walking activity in older adults,” Journal of Epidemiology and Community Health, vol. 59, no. 7, pp. 558–564, 2005.
[34]  K. J. Fisher, F. Li, Y. Michael, and M. Cleveland, “Neighborhood-level influences on physical activity among older adults: a multilevel analysis,” Journal of Aging and Physical Activity, vol. 12, no. 1, pp. 45–63, 2004.
[35]  E. M. Berke, T. D. Koepsell, A. V. Moudon, R. E. Hoskins, and E. B. Larson, “Association of the built environment with physical activity and obesity in older persons,” American Journal of Public Health, vol. 97, no. 3, pp. 486–492, 2007.
[36]  D. King, “Neighborhood and individual factors in activity in older adults: results from the neighborhood and senior health study,” Journal of Aging and Physical Activity, vol. 16, no. 2, pp. 144–170, 2008.
[37]  W. A. Satariano, S. L. Ivey, E. Kurtovich et al., “Lower-body function, neighborhoods, and walking in an older population,” American Journal of Preventive Medicine, vol. 38, no. 4, pp. 419–428, 2010.
[38]  K. S. Hall and E. McAuley, “Individual, social environmental and physical environmental barriers to achieving 10 000 steps per day among older women,” Health Education Research, vol. 25, no. 3, pp. 478–488, 2010.
[39]  P. Clarke and L. K. George, “The role of the built environment in the disablement process,” American Journal of Public Health, vol. 95, no. 11, pp. 1933–1939, 2005.
[40]  J. R. Beard, S. Blaney, M. Cerda et al., “Neighborhood characteristics and disability in older adults,” The Journals of Gerontology. Series B, vol. 64, no. 2, pp. 252–257, 2009.
[41]  G. O. Cunningham and Y. L. Michael, “Concepts guiding the study of the impact of the built environment on physical activity for older adults: a review of the literature,” American Journal of Health Promotion, vol. 18, no. 6, pp. 435–443, 2004.
[42]  S. Handy, X. Y. Cao, and P. L. Mokhtarian, “Self-selection in the relationship between the built environment and walking: empirical evidence from Northern California,” Journal of the American Planning Association, vol. 72, no. 1, pp. 55–74, 2006.
[43]  P. S. Baker, E. V. Bodner, and R. M. Allman, “Measuring life-space mobility in community-dwelling older adults,” Journal of the American Geriatrics Society, vol. 51, no. 11, pp. 1610–1614, 2003.
[44]  C. Peel, P. S. Baker, D. L. Roth, C. J. Brown, E. V. Bodner, and R. M. Allman, “Assessing mobility in older adults: the UAB sudy of aging life-space assessment,” Physical Therapy, vol. 85, no. 10, pp. 1008–1019, 2005.
[45]  S. C. Webber and M. M. Porter, “Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study,” Journal of Aging and Physical Activity, vol. 17, no. 4, pp. 455–467, 2009.
[46]  A. Bowling and M. Stafford, “How do objective and subjective assessments of neighbourhood influence social and physical functioning in older age? Findings from a British survey of ageing,” Social Science and Medicine, vol. 64, no. 12, pp. 2533–2549, 2007.
[47]  S. W. Raudenbush and R. J. Sampson, “Ecometrics: toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods,” Sociological Methodology, vol. 29, no. 1, pp. 1–41, 1999.
[48]  K. E. Pickett and M. Pearl, “Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review,” Journal of Epidemiology and Community Health, vol. 55, no. 2, pp. 111–122, 2001.
[49]  J. B. McKinlay, “The promotion of health through planned sociopolitical change: challenges for research and policy,” Social Science and Medicine, vol. 36, no. 2, pp. 109–117, 1993.
[50]  G. Rose, “Sick individuals and sick populations,” International Journal of Epidemiology, vol. 14, no. 1, pp. 32–38, 1985.
[51]  A. E. Scharlach, “Creating aging-friendly communities,” Generations, vol. 33, no. 2, pp. 5–11, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133