全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Practice-Oriented Retest Learning as the Basic Form of Cognitive Plasticity of the Aging Brain

DOI: 10.4061/2011/407074

Full-Text   Cite this paper   Add to My Lib

Abstract:

It has been well documented that aging is associated with declines in a variety of cognitive functions. A growing body of research shows that the age-related cognitive declines are reversible through cognitive training programs, suggesting maintained cognitive plasticity of the aging brain. Retest learning represents a basic form of cognitive plasticity. It has been consistently demonstrated for adults in young-old and old-old ages. Accumulated research indicates that retest learning is effective, robust, endurable and could occur at a more conceptual level beyond item-specific memorization. Recent studies also demonstrate promisingly broader transfer effects from retest practice of activities involving complex executive functioning to other untrained tasks. The results shed light on the development of self-guided mental exercise programs to improve cognitive performance and efficiency of the aging brain. The relevant studies were reviewed, and the findings were discussed in light of their limitations, implications, and future directions. 1. Introduction In research on cognition and aging, cognitive declines among older adults have been commonly documented in both cross-sectional (e.g., [1]) and longitudinal studies (e.g., [2]). The declines tend to accelerate in the advanced ages [3–6]. The cognitive declines, in combination with physical deterioration, in senior adults make them critically vulnerable in their everyday activities and could eventually deprive them of their independence and thus diminish their quality of life. This will in turn exert burdens on their families and society. This fact has spurred a growing interest in research on cognitive plasticity (i.e., the ability to improve performance through training) in older adults. The accumulated research evidence suggests that cognitive training is effective in reducing or even reversing age-related declines in target abilities that are vulnerable to aging-associated declines (for comprehensive reviews, see [7–10]). A large body of cognitive training studies has focused on directly teaching older adults strategies, including mnemonic techniques (for meta-analysis, see [11]), cognitive strategies facilitating performance on psychometric tests such as those for reasoning or spatial orientation (e.g., [12]). Direct strategy instruction often effectively lead to performance increments in the target cognitive tests for older adults (e.g., [12–16]; for reviews, see [17]), but the performance improvement is typically specific to the tasks directly corresponding to the taught strategies [11, 18]. In

References

[1]  T. A. Salthouse, “The processing-speed theory of adult age differences in cognition,” Psychological Review, vol. 103, no. 3, pp. 403–428, 1996.
[2]  K. W. Schaie, Developmental Influences on Adult Intelligence: The Seattle Longitudinal Study, Oxford University Press, New York, NY, USA, 2005.
[3]  L. B?ckman and S. W. S. MacDonald, “Death and cognition: synthesis and outlook,” European Psychologist, vol. 11, no. 3, pp. 224–235, 2006.
[4]  P. B. Baltes and K. U. Mayer, The Berlin Aging Study: Aging from 70 to 100, Cambridge University Press, New York, NY, USA, 1999.
[5]  M. R?nnlund, L. Nyberg, L. B?ckman, and L. Nilsson, “Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study,” Psychology and Aging, vol. 20, no. 1, pp. 3–18, 2005.
[6]  R. S. Wilson, T. L. Beck, J. L. Bienias, and D. A. Bennett, “Terminal cognitive decline: accelerated loss of cognition in the last years of life,” Psychosomatic Medicine, vol. 69, no. 2, pp. 131–137, 2007.
[7]  C. Hertzog, A. F. Kramer, R. S. Wilson, and U. Lindenberger, “Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced?” Psychological Science in the Public Interest, Supplement, vol. 9, no. 1, pp. 1–65, 2008.
[8]  M. L?vdén, L. B?ckman, U. Lindenberger, S. Schaefer, and F. Schmiedek, “A theoretical framework for the study of adult cognitive plasticity,” Psychological Bulletin, vol. 136, no. 4, pp. 659–676, 2010.
[9]  E. A. L. Stine-Morrow and C. Basak, “Cognitive interventions,” in Handbook of the Psychology of Aging, K. W. Schaie and S. L. Willis, Eds., pp. 153–171, Elsevier Academic Press, San Diego, Calif, USA, 7th edition, 2011.
[10]  G. Thompson and D. Foth, “Cognitive-training programs for older adults: what are they and can they enhance mental fitness?” Educational Gerontology, vol. 31, no. 8, pp. 603–626, 2005.
[11]  P. Verhaeghen, A. Marcoen, and L. Goossens, “Improving memory performance in the aged through mnemonic training: a meta-analytic study,” Psychology and aging, vol. 7, no. 2, pp. 242–251, 1992.
[12]  K. W. Schaie and S. L. Willis, “Can decline in adult intellectual functioning be reversed?” Developmental Psychology, vol. 22, no. 2, pp. 223–232, 1986.
[13]  K. Ball, D. B. Berch, K. F. Helmers et al., “Effects of cognitive training interventions with older adults: a randomized controlled trial,” JAMA, vol. 288, no. 18, pp. 2271–2281, 2002.
[14]  P. B. Baltes and S. L. Willis, “Plasticity and enhancement of intellectual functioning in old age: Penn State's adult development and enrichment project (ADEPT),” in Aging and Cognitive Processes, F. I. M. Craik and E. E. Trehub, Eds., pp. 353–389, Plenum Press, New York, NY, USA, 1982.
[15]  F. I. M. Craik, G. Winocur, H. Palmer et al., “Cognitive rehabilitation in the elderly: effects on memory,” Journal of the International Neuropsychological Society, vol. 13, no. 1, pp. 132–142, 2007.
[16]  D. T. Stuss, I. H. Robertson, F. I. M. Craik et al., “Cognitive rehabilitation in the elderly: a randomized trial to evaluate a new protocol,” Journal of the International Neuropsychological Society, vol. 13, no. 1, pp. 120–131, 2007.
[17]  P. B. Baltes and U. Linderberger, “On the range of cognitive plasticity in old age as a function of experience: 15 Years of intervention research,” Behavior Therapy, vol. 19, no. 3, pp. 283–300, 1988.
[18]  G. W. Rebok, M. C. Carlson, and J. B. Langbaum, “Training and maintaining memory abilities in healthy older adults: traditional and novel approaches,” Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, vol. 62B, no. I, pp. 53–61, 2007.
[19]  P. B. Baltes, D. Sowarka, and R. Kliegl, “Cognitive training research on fluid intelligence in old age: what can older adults achieve by themselves?” Psychology and aging, vol. 4, no. 2, pp. 217–221, 1989.
[20]  T. Singer, U. Lindenberger, and P. B. Baltes, “Plasticity of memory for new learning in very old age: a story of major loss?” Psychology and Aging, vol. 18, no. 2, pp. 306–317, 2003.
[21]  L. Bherer, A. F. Kramer, M. S. Peterson, S. Colcombe, K. Erickson, and E. Becic, “Training effects on dual-task performance: are there age-related differences in plasticity of attentional control?” Psychology and Aging, vol. 20, no. 4, pp. 695–709, 2005.
[22]  S. Li, F. Schmiedek, O. Huxhold, C. R?cke, J. Smith, and U. Lindenberger, “Working memory plasticity in old age: practice gain, transfer, and maintenance,” Psychology and Aging, vol. 23, no. 4, pp. 731–742, 2008.
[23]  L. Yang, R. T. Krampe, and P. B. Baltes, “Basic forms of cognitive plasticity extended into the oldest-old: retest learning, age, and cognitive functioning,” Psychology and Aging, vol. 21, no. 2, pp. 372–378, 2006.
[24]  J. Karbach and J. Kray, “How useful is executive control training? Age differences in near and far transfer of task-switching training,” Developmental Science, vol. 12, no. 6, pp. 978–990, 2009.
[25]  S. L. Willis, “Methodological issues in behavioral intervention research with the elderly,” in Handbook of the Psychology of Aging, J. E. Birren and K. W. Schaie, Eds., pp. 78–108, Academic Press, San Diego, Calif, USA, 5th edition, 2001.
[26]  A. F. Kramer and S. L. Willis, “Enhancing the cognitive vitality of older adults,” Current Directions in Psychological Science, vol. 11, no. 5, pp. 173–177, 2002.
[27]  P. M. Greenwood, “Functional plasticity in cognitive aging: review and hypothesis,” Neuropsychology, vol. 21, no. 6, pp. 657–673, 2007.
[28]  J. O. Goh and D. C. Park, “Neuroplasticity and cognitive aging: the scaffolding theory of aging and cognition,” Restorative Neurology and Neuroscience, vol. 27, no. 5, pp. 391–403, 2009.
[29]  E. Ferrer, T. A. Salthouse, W. F. Stewart, and B. S. Schwartz, “Modeling age and retest processes in longitudinal studies of cognitive abilities,” Psychology and Aging, vol. 19, no. 2, pp. 243–259, 2004.
[30]  E. Ferrer, T. A. Salthouse, J. J. McArdle, W. F. Stewart, and B. S. Schwartz, “Multivariate modeling of age and retest in longitudinal studies of cognitive abilities,” Psychology and Aging, vol. 20, no. 3, pp. 412–422, 2005.
[31]  T. A. Salthouse, D. H. Schroeder, and E. Ferrer, “Estimating retest effects in longitudinal assessments of cognitive functioning in adults between 18 and 60 years of age,” Developmental Psychology, vol. 40, no. 5, pp. 813–822, 2004.
[32]  T. A. Salthouse, “Influence of age on practice effects in longitudinal neurocognitive change,” Neuropsychology, vol. 24, no. 5, pp. 563–572, 2010.
[33]  B. F. Hofland, S. L. Willis, and P. B. Baltes, “Fluid intelligence performance in the elderly: intraindividual variability and conditions of assessment,” Journal of Educational Psychology, vol. 73, no. 4, pp. 573–586, 1981.
[34]  W. J. Hoyer, G. V. Labouvie, and P. B. Baltes, “Modification of response speed deficits and intellectual performance in the elderly,” Human Development, vol. 16, no. 3, pp. 233–242, 1973.
[35]  E. Dahlin, A. S. Neely, A. Larsson, L. B?ckman, and L. Nyberg, “Transfer of learning after updating training mediated by the striatum,” Science, vol. 320, no. 5882, pp. 1510–1512, 2008.
[36]  A. F. Kramer, J. F. Larish, and D. L. Strayer, “Training for attentional control in dual task settings: a comparison of young and old adults,” Journal of Experimental Psychology: Applied, vol. 1, no. 1, pp. 50–76, 1995.
[37]  A. Wilkinson and L. Yang, “Plasticity of inhibition in older adults: retest practice and transfer effects,” Psychology and Aging. In press.
[38]  K. I. Erickson, S. J. Colcombe, R. Wadhwa et al., “Training-induced functional activation changes in dual-task processing: an fMRI study,” Cerebral Cortex, vol. 17, no. 1, pp. 192–204, 2007.
[39]  M. Buschkuehl, S. M. Jaeggi, S. Hutchison et al., “Impact of working memory training on memory performance in old-old adults,” Psychology and Aging, vol. 23, no. 4, pp. 743–753, 2008.
[40]  T. A. Salthouse and E. Tucker-Drob, “Implications of short-term retest effects for the interpretation of longitudinal change,” Neuropsychology, vol. 22, no. 6, pp. 800–811, 2008.
[41]  L. Yang, M. Reed, F. A. Russo, and A. Wilkinson, “A new look at retest learning in older adults: learning in the absence of item-specific effects,” The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, vol. 64B, no. 4, pp. 470–473, 2009.
[42]  J. S. Saczynski, S. L. Willis, and K. W. Schaie, “Strategy use in reasoning training with older adults,” Aging, Neuropsychology, and Cognition, vol. 9, no. 1, pp. 48–60, 2002.
[43]  S. L. Willis, S. L. Tennstedt, M. Marsiske et al., “Long-term effects of cognitive training on everyday functional outcomes in older adults,” JAMA, vol. 296, no. 23, pp. 2805–2814, 2006.
[44]  S. L. Willis and C. S. Nesselroade, “Long-term effects of fluid ability training in old-old age,” Developmental Psychology, vol. 26, no. 6, pp. 905–910, 1990.
[45]  L. Yang and R. T. Krampe, “Long-term maintenance of retest learning in young old and oldest old adults,” The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, vol. 64B, no. 5, pp. 608–611, 2009.
[46]  A. Wilkinson and L. Yang, “Plasticity of inhibition in older adults: 1-year maintenance of retest practice effects,” . In preparation.
[47]  A. M. Owen, A. Hampshire, J. A. Grahn et al., “Putting brain training to the test,” Nature, vol. 465, no. 7299, pp. 775–778, 2010.
[48]  C. Basak, W. R. Boot, M. W. Voss, and A. F. Kramer, “Can training in a real-time strategy video game attenuate cognitive decline in older adults?” Psychology and Aging, vol. 23, no. 4, pp. 765–777, 2008.
[49]  M. C. Carlson, J. S. Saczynski, G. W. Rebok et al., “Exploring the effects of an "everyday" activity program on executive function and memory in older adults: Experience corps?,” The Gerontologist, vol. 48, no. 6, pp. 793–801, 2008.
[50]  E. A. L. Stine-Morrow, J. M. Parisi, D. G. Morrow, and D. C. Park, “The effects of an engaged lifestyle on cognitive vitality: a field experiment,” Psychology and Aging, vol. 23, no. 4, pp. 778–786, 2008.
[51]  L. J. Tranter and W. Koutstaal, “Age and flexible thinking: an experimental demonstration of the beneficial effects of increased cognitively stimulating activity on fluid intelligence in healthy older adults,” Aging, Neuropsychology, and Cognition, vol. 15, no. 2, pp. 184–207, 2008.
[52]  G. E. Smith, P. Housen, K. Yaffe et al., “A cognitive training program based on principles of brain plasticity: results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study,” Journal of the American Geriatrics Society, vol. 57, no. 4, pp. 594–603, 2009.
[53]  R. L. West, “An application of prefrontal cortex function theory to cognitive aging,” Psychological Bulletin, vol. 120, no. 2, pp. 272–292, 1996.
[54]  N. Raz, “The aging brain observed in vivo: differential changes and their modifiers,” in Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging, R. Cabeza, L. Nyberg, and D. C. Park, Eds., pp. 19–57, Oxford University Press, New York, NY, USA, 2004.
[55]  F. Schmiedek, C. Bauer, M. L?vdén, A. Brose, and U. Lindenberger, “Cognitive enrichment in old age: web-based training programs,” GeroPsych, vol. 23, no. 2, pp. 59–67, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133