全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Population Where Men Live As Long As Women: Villagrande Strisaili, Sardinia

DOI: 10.4061/2011/153756

Full-Text   Cite this paper   Add to My Lib

Abstract:

Usually women live longer than men and female centenarians largely outnumber male centenarians. The findings of previous studies identifying a population with a femininity ratio close to 1.0 among centenarians in the mountainous region of Sardinia was the starting point of an in-depth investigation in order to compare mortality trajectories between men and women in that population. The exceptional survival of men compared to women emerges from the comparison with similar Italian data. Age exaggeration for men has been strictly excluded as a result of the age validation procedure. The discussion suggests that besides biological/genetic factors, the behavioral factors including life style, demographic behavior, family support, and community characteristics may play an important role. No single explanation is likely to account for such an exceptional situation and a fully integrated multidisciplinary approach is urgently needed. 1. Introduction In developed countries, it has been widely documented that females live longer than males [1–3]. This female advantage in survival, the so-called Longevity Gender Gap (LGG), results from lower female death rates throughout the lifespan [4–6]. In traditional societies, the LGG was less pronounced and even inversed [7] and a secular trend of increasing LGG is generally observed. Nevertheless the trend has changed in the recent decades resulting in a slightly decreasing LGG [8]. In general, it has been observed that during the life course, the occurrence of certain diseases such as cardiovascular diseases, lung cancer and accidents are more frequent among males [9] and this trend is confirmed when extending the comparison to the top 12 causes of deaths [10]. The cumulative effect of these differences throughout the life course, results in a greater proportion of females surviving at more advanced ages. In populations experiencing a low mortality, the femininity ratio (F/M) among centenarians is usually above 4, that is, there are more than 4 female centenarians per male centenarian (data source: Human Mortality Database). However, recent research has shown that in certain populations the F/M ratio among the oldest olds may be remarkably lower, and when this occurs it is often the result of a reduced excess of male mortality rather than a higher mortality of women [11–13]. Among these populations, the one living in the Mediterranean island of Sardinia certainly represents an interesting case study. This region has been suspected to be characterized by a particularly high male longevity [14]. Considering the importance

References

[1]  Q. R. Hazzard, “The sex differences in longevity,” in Geriatric Medicine and Gerontology, W. R. Hazzard, Ed., McGraw-Hill, New York, NY, USA, 1994.
[2]  R. Crose, Why Women Live Longer than Men?Jossey-Bass, San Francisco, Calif, USA, 1997.
[3]  J. Clarke, The Human Dichotomy: The Changing Numbers of Males and Females, Pergamon, Amsterdam, The Netherlands, 2000.
[4]  R. H. Daw, “The comparison of male and female mortality rates,” Journal of the Royal Statistical Society, Series A (General), vol. 124, no. 1, pp. 20–43, 1961.
[5]  S. P. Phillips, “Risky business: explaining the gender gap in longevity,” Journal of Men's Health and Gender, vol. 3, no. 1, pp. 43–46, 2006.
[6]  R. Jacobsen, A. Oksuzyan, H. Engberg, B. Jeune, J. W. Vaupel, and K. Christensen, “Sex differential in mortality trends of old-aged Danes: a nation wide study of age, period and cohort effects,” European Journal of Epidemiology, vol. 23, no. 11, pp. 723–730, 2008.
[7]  D. J. Kruger and R. N. Nesse, “An evolutionary life-history framework for understanding sex differences in human mortality rates,” Human Nature, vol. 17, no. 1, pp. 74–97, 2006.
[8]  F. Mesle, “Progrès récents de l'espérance de vie en France : ies hommes comblent une partie de leur retard,” Population, vol. 61, pp. 437–462, 2006.
[9]  J. M. Guralnik, J. L. Balfour, and S. Volpato, “The ratio of older women to men: historical perspectives and cross-national comparisons,” Aging-Clinical and Experimental Research, vol. 12, no. 2, pp. 65–76, 2000.
[10]  S. Austad, “Why women live longer than men: sex differences in longevity,” Gender Medicine, vol. 3, no. 2, pp. 79–92, 2006.
[11]  C. Franceschi, L. Motta, S. Valensin, et al., “Do men and women follow different trajectories to reach extreme longevity? Italian multicenter study on centenarians (IMUSCE),” Aging-Clinical and Experimental Research, vol. 12, no. 2, pp. 77–84, 2000.
[12]  G. Passarino, C. Calignano, A. Vallone et al., “Male/female ratio in centenarians: a possible role played by population genetic structure,” Experimental Gerontology, vol. 37, no. 10-11, pp. 1283–1289, 2002.
[13]  J.-M. Robine, G. Caselli, D. Rasulo, and A. Cournil, “Differentials in the femininity ratio among centenarians: variations between northern and southern Italy from 1870,” Population Studies, vol. 60, no. 1, pp. 99–113, 2006.
[14]  L. Deiana, L. Ferrucci, G. M. Pes et al., “AKEntAnnos. The sardinia study of extreme longevity,” Aging Clinical and Experimental Research, vol. 11, no. 3, pp. 142–149, 1999.
[15]  M. Poulain, G. M. Pes, C. Carru, et al., “The validation of exceptional male longevity in Sardinia,” in Human Longevity, Individual Life Duration and the Growth of the Oldest-Old Population, J. M. Robine, E. M. Crimmins, S. Horiuchi, et al., Eds., chapter 7, pp. 146–166, Springler & Kluwer, New York, NY, USA, 2006.
[16]  M. Poulain, G. M. Pes, C. Grasland et al., “Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study,” Experimental Gerontology, vol. 39, no. 9, pp. 1423–1429, 2004.
[17]  Human Mortality Database (Wilmoth J., University of California, Berkeley and Shkolnikov V., Max Planck Institute for Demographic Research), 2011, http://www.mortality.org.
[18]  F. Coletti, La Mortalità nei Primi Anni d'età e la Vita Sociale in Sardegna, Fratelli Bocca, Torino, Italy, 1908.
[19]  L. Pozzi, La lotta per la vita. Evoluzione e Geografia della Sopravvivenza in Italia fra '800 e '900, Forum, Udine, Italy, 2000.
[20]  A. M. Gatti, “Livelli e caratteristiche della mortalità nella diocesi di Ales in Sardegna (1801–1825),” in Omaggio a Danilo Giori, G. Bottazi, Ed., Giuffré, Milano, Italy, 1990.
[21]  A. M. Gatti, “La mortalità infantile tra ottocento e novecento. La Sardegna nel panorama italiano,” in Quaderni del Dipartimento di Ricerche Economiche e Sociali, vol. 13, University of Cagliari, Cagliari, Italy, 2002.
[22]  M. Breschi, S. Mazzoni, P. M. Melis, and L. Pozzi, “Nuove indagini per l'analisi della mortalità nei primi anni di vita in Sardegna,” in Salute, Malattia e Sopravvivenza in Italia fra '800 e '900, M. Breschi and L. Pozzi, Eds., pp. 191–216, Forum, Udine, Italy, 2007.
[23]  L. Orrù and F. Putzolu, Il Parto e la Nascita in Sardegna. Tradizione Medicalizzazione Ospedalizzazione, CUEC, Cagliari, Italy, 1993.
[24]  L. Salaris, Searching for Longevity Determinants: Following Survival of Newborns in In-Land Village in Sardinia (1866–2006), Ph.D. thesis, Presses Universitaires de Louvain, 2009.
[25]  A. M. Gatti, “Nascita dell'ostetricia e mortalità materna in Sardegna (XVII-XIX secolo),” in Bollettino di Demografia Storica, vol. 30-31, pp. 79–94, Si.De.S. Società Italiana di Demografia Storica, Roma, Italy, 1999.
[26]  D. L. Wingard, “The sex differential in morbidity, mortality, and lifestyle,” Annual Review of Public Health, vol. 5, pp. 433–458, 1984.
[27]  I. Waldron, “What do we know about causes of sex differences in mortality? A review of the literature,” Population Bulletin of the United Nations, no. 18, pp. 59–76, 1985.
[28]  L. M. Verbrugge and D. L. Wingard, “Sex differentials in health and mortality,” Women and Health, vol. 12, no. 2, pp. 103–145, 1987.
[29]  F. M. Antonini, “Perché le donne sono più longeve degli uomini?” Giornale di Gerontologia, vol. 39, no. 4, pp. 177–178, 1991.
[30]  B. B. Kalben, “Why men die younger: causes of mortality differences by sex,” North American Actuarial Journal, vol. 4, pp. 83–111, 2000.
[31]  A. Case and C. Paxson, “Sex differences in morbidity and mortality,” Demography, vol. 42, no. 2, pp. 189–214, 2005.
[32]  A. Oksuzyan, K. Juel, J. W. Vaupel, and K. Christensen, “Men: good health and high mortality. Sex differences in health and aging,” Aging Clinical and Experimental Research, vol. 20, no. 2, pp. 91–102, 2008.
[33]  R. G. Rogers, B. G. Everett, J. M. Onge, and P. M. Krueger, “Social, behavioral, and biological factors, and sex differences in mortality,” Demography, vol. 47, no. 3, pp. 555–578, 2010.
[34]  M. Bonafè, M. Cardelli, F. Marchegiani et al., “Increase of homozygosity in centenarians revealed by a new inter-Alu PCR technique,” Experimental Gerontology, vol. 36, no. 7, pp. 1063–1073, 2001.
[35]  A. Cannas, Biddamanna. Vida longa. Villagrande Strisaili, paese di longevi, Cagliari, 2007.
[36]  A. Moroni, A. Anelli, W. Anghinetti, et al., “La consanguineità umana nell’isola di Sardegna dal secolo XVIII al secolo XX,” L'Ateneo Parmense, vol. 1, supplement 8, pp. 69–92, 1972.
[37]  K. Christensen, K. H. ?rstavik, and J. W. Vaupel, “The X chromosome and the female survival advantage: an example of the intersection between genetic, epidemiology and demography,” Annals of the New York Academy of Sciences, vol. 954, pp. 175–183, 2001.
[38]  L. A. Gavrilov, N. S. Gavrilova, G. N. Evdokushkina, et al., “Determinants of human longevity: parental age at reproduction and offspring longevity,” Longevity Report, vol. 10, no. 54, pp. 7–15, 1996.
[39]  L. L. Cavalli Sforza, P. Menozzi, A. Piazza, et al., The History and Geography of Human Genes, Princeton University Press, Princeton, NJ, USA, 1994.
[40]  E. Sanna, G. G. Cosseddu, G. Floris, R. Bruno, A. Salis, and M. Silvetti, “Present-day G-6-PD deficit in Sardinia with respect to malarial morbidity and mortality in the past,” Zeitschrift fur Morphologie und Anthropologie, vol. 78, no. 2, pp. 257–267, 1990.
[41]  A. G. Schwartz and L. L. Pashko, “Dehydroepiandrosterone, glucose-6-phosphate dehydrogenase, and longevity,” Ageing Research Reviews, vol. 3, no. 2, pp. 171–187, 2004.
[42]  E. Sanna, G. G. Cosseddu, G. Floris, et al., “Micromapping the distribution of G6PD deficiency in Sardinia with data collected from the 1950s to the 1980s,” in Adaptation to Malaria. The Interaction of Biology and Culture, L. S. Greene and M. E. Danubio, Eds., pp. 293–322, New York, NY, USA, 1997.
[43]  A. Aviv, J. Shay, K. Christensen, and W. Wright, “The longevity gender gap: are telomeres the explanation?” Science of Aging Knowledge Environment, vol. 2005, no. 23, article pe16, 2005.
[44]  T. S. Nawrot, J. A. Staessen, and J. P. Gardner, “Telomere length and possible link to X chromosome,” The Lancet, vol. 363, no. 9408, pp. 507–510, 2004.
[45]  G. A. Laughlin, E. Barrett-Connor, and J. Bergstrom, “Low serum testosterone and mortality in older men,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 1, pp. 68–75, 2008.
[46]  G. Delitala, F. Sanciu, G. Fanciulli, et al., “Gonadal hormones and adrenal steroidogenesis in centenarians,” Biochimica Clinica, vol. 30, p. S37, 2006.
[47]  G. Passarino, P. A. Underhill, L. L. Cavalli-Sforza et al., “Y chromosome binary markers to study the high prevalence of males in Sardinian centenarians and the genetic structure of the Sardinian population,” Human Heredity, vol. 52, no. 3, pp. 136–139, 2001.
[48]  G. De Benedictis, G. Rose, G. Carrieri et al., “Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans,” The FASEB Journal, vol. 13, no. 12, pp. 1532–1536, 1999.
[49]  C. Fraumene, E. Petretto, A. Angius, and M. Pirastu, “Striking differentiation of sub-populations within a genetically homogeneous isolate (Ogliastra) in Sardinia as revealed by mtDNA analysis,” Human Genetics, vol. 114, no. 1, pp. 1–10, 2003.
[50]  M. Gallerani, C. Scapoli, I. Cicognani et al., “Thalassaemia trait and myocardial infarction: low infarction incidence in male subjects confirmed,” Journal of Internal Medicine, vol. 230, no. 2, pp. 109–111, 1991.
[51]  G. Caselli and R. M. Lipsi, “Survival differences among the oldest old in Sardinia: who, what, where, and why,” Demographic Research, vol. 14, pp. 267–294, 2006.
[52]  T. T. Samaras, H. Elrick, and L. H. Storms, “Is height related to longevity?” Life Sciences, vol. 72, no. 16, pp. 1781–1802, 2003.
[53]  L. Salaris, M. Poulain, I. S. Piras, et al., “Height and longevity among males born in Villagrande Strisaili, (1866–1915),” in Proceedings of the 43rd Riunione Scientifica SIS, Section C24—Mortality, Health and Poverty, pp. 649–652, CLUEP Padova, Torino, Italy, June 2006.
[54]  L. Salaris, M. Poulain, and T. T. Samaras, “Height and survival at older ages among males born in an in-land village in Sardinia (Italy), 1866–2006,” submitted.
[55]  R. Corder, W. Mullen, N. Q. Khan et al., “Oenology: red wine procyanidins and vascular health,” Nature, vol. 444, no. 7119, p. 566, 2006.
[56]  L. Edelsward, Highlands Visions. Recreating Rural Sardinia, Ph.D.Deissertation, Department of Anthropology. McGill University, 1995.
[57]  D. E. Warburton, C. W. Nicol, and S. S. Bredin, “Health benefits of physical activity: the evidence,” Canadian Medical Association Journal, vol. 174, no. 6, pp. 801–809, 2006.
[58]  G. M. Pes, F. Tolu, and M. Poulain, “Lifestyle and nutrition related to male longevity in Sardinia: an ecological study,” Nutrition, Metabolism & Cardiovascular Diseases. In press.
[59]  L. Assmuth, Women's Work, Women's Worth: Changing Life courses in Highland Sardinia, vol. 39 of Transactions of the Finnish Anthropological Society, Finnish Anthropological Society, 1997.
[60]  E. J. Giltay, J. M. Geleijnse, F. G. Zitman, T. Hoekstra, and E. G. Schouten, “Dispositional optimism and all-cause and cardiovascular mortality in a prospective cohort of elderly Dutch men and women,” Archives of General Psychiatry, vol. 61, no. 11, pp. 1126–1135, 2004.
[61]  M. Pitzalis-Acciaro, In Nome della Madre. Ipotesi sul Matriarcato Barbaricino, Feltrinelli Economica, Milano, Italy, 1978.
[62]  M. G. Da Re, La casa e I Campi. La Divisione Sessuale del Lavoro nella Sardegna Tradizionale, CUEC, Cagliari, Italy, 1990.
[63]  A. Oppo, “Where there's no woman there's no home: profile of the agro-pastoral family in nineteenth-century Sardinia,” Journal of Family History, vol. 15, no. 1, pp. 483–502, 1990.
[64]  C. Eller, The Myth of a Matriarchal Prehistory, The University Press Group, 2011.
[65]  J. Gaymu, P. Festy, M. Poulain, and G. Beets, Future Elderly Living Conditions in Europe, INED, Paris, Farnce, 2008.
[66]  D. Foster, L. Klinger Vartabedian, and L. Wispe, “Male longevity and age differences between spouses,” Journals of Gerontology, vol. 39, no. 1, pp. 117–120, 1984.
[67]  L. Bernardi and A. Oppo, Fertility and Family Configurations in Sardinia, MPIDR Working Paper WP 2007-033, Max Planck Institute for Demographic Research, 2007.
[68]  P. Astolfi, G. Caselli, O. Fioranic, et al., “Late reproduction behaviour in Sardinia: spatial analysis suggests local aptitude towards reproductive longevity,” Evolution and Human Behavior, vol. 30, no. 2, pp. 93–102, 2009.
[69]  H. G. Müller, J. M. Chiou, J. R. Carey, and J. L. Wang, “Fertility and life span: late children enhance female longevity,” Journals of Gerontology, Series A Biological Sciences and Medical Sciences, vol. 57, no. 5, pp. 202–206, 2002.
[70]  Y. Zeng and J. W. Vaupel, “Association of late childbearing with healthy longevity among the oldest-old in China,” Population Studies, vol. 58, no. 1, pp. 37–53, 2004.
[71]  K. R. Smith, A. Gagnon, R. M. Cawthon, G. P. Mineau, R. Mazan, and B. Desjardins, “Familial aggregation of survival and late female reproduction,” Journals of Gerontology, Series A Biological Sciences and Medical Sciences, vol. 64, no. 7, pp. 740–744, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133