Ischemic Preconditioning of Rat Livers from Non-Heart-Beating Donors Decreases Parenchymal Cell Killing and Increases Graft Survival after Transplantation
A critical shortage of donors exists for liver transplantation, which non-heart-beating cadaver donors could help ease. This study evaluated ischemic preconditioning to improve graft viability after non-heart-beating liver donation in rats. Ischemic preconditioning was performed by clamping the portal vein and hepatic artery for 10?min followed by unclamping for 5?min. Subsequently, the aorta was cross-clamped for up to 120?min. After 2?h of storage, livers were either transplanted or perfused with warm buffer containing trypan blue. Aortic clamping for 60 and 120?min prior to liver harvest markedly decreased 30-day graft survival from 100% without aortic clamping to 50% and 0%, respectively, which ischemic preconditioning restored to 100 and 50%. After 60?min of aortic clamping, loss of viability of parenchymal and nonparenchymal cells was 22.6 and 5.6%, respectively, which preconditioning decreased to 3.0 and 1.5%. Cold storage after aortic clamping further increased parenchymal and non-parenchymal cell killing to 40.4 and 10.1%, respectively, which ischemic preconditioning decreased to 12.4 and 1.8%. In conclusion, ischemic preconditioning markedly decreased cell killing after subsequent sustained warm ischemia. Most importantly, ischemic preconditioning restored 100% graft survival of livers harvested from non-heart-beating donors after 60?min of aortic clamping. 1. Introduction Liver transplantation surgery is a viable alternative for patients with end-stage liver disease but the number of heart-beating cadavers suitable for liver donation remains a key limitation. In human kidney transplantation, organ donation from non-heart-beating cadavers is now employed successfully at many centers [1]. Organ donors are typically terminally ill patients who do not meet the criteria of brain death and whose life support is withdrawn at the request of the family. After cardiac arrest occurs and death is pronounced several minutes later, the organs are harvested. The use of livers from non-heart-beating donors is also emerging as an important stratagem to expand the liver donor pool [2]. Organs from non-heart-beating cadaver donors typically experience several minutes of warm ischemia prior to cold preservation. Warm ischemic injury that occurs to livers after cardiac arrest can severely compromise graft viability. Early clinical results with livers from non-heart-beating donors were poor, and two-month graft survival was only 50% even for donors that were extubated in an operating room setting [3]. With more rapid organ harvesting, clinical outcomes have
References
[1]
A. R. Evenson, “Utilization of kidneys from donation after circulatory determination of death,” Current Opinion in Organ Transplantation, vol. 16, no. 4, pp. 385–389, 2011.
[2]
D. Monbaliu, J. Pirenne, and D. Talbot, “Liver transplantation using Donation after Cardiac Death donors,” Journal of Hepatology, vol. 56, pp. 474–485, 2012.
[3]
A. Casavilla, C. Ramirez, R. Shapiro et al., “Experience with liver and kidney allografts from non-heart-beating donors,” Transplantation, vol. 59, no. 2, pp. 197–203, 1995.
[4]
D. J. Hausenloy and D. M. Yellon, “The therapeutic potential of ischemic conditioning: an update,” Nature Reviews Cardiology, vol. 8, pp. 619–629, 2011.
[5]
E. Alchera, C. Dal Ponte, C. Imarisio, E. Albano, and R. Carini, “Molecular mechanisms of liver preconditioning,” World Journal of Gastroenterology, vol. 16, no. 48, pp. 6058–6067, 2010.
[6]
C. Peralta, G. Hotter, D. Closa, E. Gelpí, O. Bulbena, and J. Roselló-Catafau, “Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: role of nitric oxide and adenosine,” Hepatology, vol. 25, no. 4, pp. 934–937, 1997.
[7]
T. Yoshizumi, K. Yanaga, Y. Soejima, T. Maeda, H. Uchiyama, and K. Sugimachi, “Amelioration of liver injury by ischaemic preconditioning,” British Journal of Surgery, vol. 85, no. 12, pp. 1636–1640, 1998.
[8]
A. Serafín, J. Roselló-Catafau, N. Prats, C. Xaus, E. Gelpí, and C. Peralta, “Ischemic preconditioning increases the tolerance of fatty liver to hepatic ischemia-reperfusion injury in the rat,” American Journal of Pathology, vol. 161, no. 2, pp. 587–601, 2002.
[9]
M. Arai, R. G. Thurman, and J. J. Lemasters, “Contribution of adenosine A2 receptors and cyclic adenosine monophosphate to protective ischemic preconditioning of sinusoidal endothelial cells against storage/reperfusion injury in rat livers,” Hepatology, vol. 32, no. 2, pp. 297–302, 2000.
[10]
D. P. Yin, H. N. Sankary, A. S. F. Chong et al., “Protective effect of ischemic preconditioning on liver preservation-reperfusion injury in rats,” Transplantation, vol. 66, no. 2, pp. 152–157, 1998.
[11]
P. A. Clavien, M. Selzner, H. A. Rüdiger et al., “A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning,” Annals of Surgery, vol. 238, no. 6, pp. 843–852, 2003.
[12]
O. de Rougemont, K. Lehmann, and P. A. Clavien, “Preconditioning, organ preservation, and postconditioning to prevent ischemia-reperfusion injury to the liver,” Liver Transplantation, vol. 15, no. 10, pp. 1172–1182, 2009.
[13]
M. L. De Oliveira, R. Graf, and P. A. Clavien, “Ischemic preconditioning: promises from the laboratory to patients—sustained or disillusioned?” American Journal of Transplantation, vol. 8, no. 3, pp. 489–491, 2008.
[14]
B. Koneru, A. Fisher, Y. He et al., “Ischemic preconditioning in deceased donor liver transplantation: a prospective randomized clinical trial of safety and efficacy,” Liver Transplantation, vol. 11, no. 2, pp. 196–202, 2005.
[15]
R. Steffen, D. M. Ferguson, and R. A. F. Krom, “A new method for orthotopic rat liver transplantation with arterial cuff anastomosis to the recipient common hepatic artery,” Transplantation, vol. 48, no. 1, pp. 166–168, 1989.
[16]
B. U. Bradford, M. Marotto, J. J. Lemasters, and R. G. Thurman, “New, simple models to evaluate zone-specific damage due to hypoxia in the perfused rat liver: time course and effect of nutritional state,” Journal of Pharmacology and Experimental Therapeutics, vol. 236, no. 1, pp. 263–268, 1986.
[17]
J. C. Caldwell-Kenkel, R. T. Currin, Y. Tanaka, R. G. Thurman, and J. J. Lemasters, “Reperfusion injury to endothelial cells following cold ischemic storage of rat livers,” Hepatology, vol. 10, no. 3, pp. 292–299, 1989.
[18]
H. Jaeschke and J. J. Lemasters, “Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury,” Gastroenterology, vol. 125, no. 4, pp. 1246–1257, 2003.
[19]
J. C. Caldwell-Kenkel, R. G. Thurman, and J. J. Lemasters, “Selective loss of nonparenchymal cell viability after cold ischemic storage of rat livers,” Transplantation, vol. 45, no. 4, pp. 834–837, 1988.
[20]
J. C. Caldwell-Kenkel, R. T. Currin, Y. Tanaka, R. G. Thurman, and J. J. Lemasters, “Kupffer cell activation and endothelial cell damage after storage of rat livers: effects of reperfusion,” Hepatology, vol. 13, no. 1, pp. 83–95, 1991.
[21]
P. M. Porrett, J. Hsu, and A. Shaked, “Late surgical complications following liver transplantation,” Liver Transplantation, vol. 15, no. 2, pp. S12–S18, 2009.
[22]
C. L. Jay, V. Lyuksemburg, D. P. Ladner et al., “Ischemic cholangiopathy after controlled donation after cardiac death liver transplantation: a meta-analysis,” Annals of Surgery, vol. 253, no. 2, pp. 259–264, 2011.
[23]
M. Arai, R. G. Thurman, and J. J. Lemasters, “Involvement of Kupffer cells and sinusoidal endothelial cells in ischemic preconditioning to rat livers stored for transplantation,” Transplantation Proceedings, vol. 31, no. 1-2, pp. 425–427, 1999.
[24]
M. Arai, R. G. Thurman, and J. J. Lemasters, “Ischemic preconditioning of rat livers against cold storage-reperfusion injury: role of nonparenchymal cells and the phenomenon of heterologous preconditioning,” Liver Transplantation, vol. 7, no. 4, pp. 292–299, 2001.
[25]
H. Rehman, H. D. Connor, V. K. Ramshesh et al., “Ischemic preconditioning prevents free radical production and mitochondrial depolarization in small-for-size rat liver grafts,” Transplantation, vol. 85, no. 9, pp. 1322–1331, 2008.