全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2015 

基于社会关系的工作流任务分派策略研究

DOI: 10.13328/j.cnki.jos.004766, PP. 562-573

Keywords: 工作流,任务分派,社会关系,q学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

在工作流管理系统中,任务分派策略对工作流系统的性能影响较大,而人力资源社会属性的不稳定也给任务分派带来了挑战.一般的任务分派策略还存在以下问题:分派时只考虑候选资源的个体属性,忽略了流程中其他资源对候选资源的影响;需要为候选资源预先设置能力指标,但预设指标很难与候选资源的实际情况吻合,错误的能力指标会导致将任务分派给不合适的资源,降低工作流系统的性能.为克服上述问题,基于不同的状态转移视角和奖励函数,提出了4种基于q学习的任务分派算法.通过对比实验,论证了基于q学习的任务分派算法在未预设资源能力的情况下仍能取得较好效果,且支持在任务分派过程中考虑社会关系的影响,使得平均案例完成时间进一步降低.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133