全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2009 

一种基于概念的数据聚类模型

, PP. 2387-2396

Keywords: 数据挖掘,聚类,概念,概念元组,模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

在数据挖掘研究领域,现有的大多数聚类算法都受到数据可伸缩性和结果可解释性的限制.为了解决这一难题,提出了一种基于概念的数据聚类模型.该模型从描述数据样本的数据本身出发,首先在预处理后的数据集上提取基本概念,再对这些概念进行概化,形成表示聚类结果的高层概念,最后基于这些高层概念进行样本划分,从而完成整个聚类过程.该模型能够在保证聚类准确性的基础上,很大程度地减少要处理的数据量,提高原算法的可伸缩性.另外,该模型基于概念进行知识的发现与分析,能够提高聚类结果的可解释性,便于与用户交互.实验结果表明,该模型对于聚类结果较好且复杂度较高的算法尤为有效.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133