全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2002 

高维空间中的离群点发现

, PP. 280-290

Keywords: 数据挖掘,离群点,超图模型,聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

在许多kdd(knowledgediscoveryindatabases)应用中,如电子商务中的欺诈行为监测,例外情况或离群点的发现比常规知识的发现更有意义.现有的离群点发现大多是针对数值属性的,而且这些方法只能发现离群点,不能对其含义进行解释.提出了一种基于超图模型的离群点(outlier)定义,这一定义既体现了"局部"的概念,又能很好地解释离群点的含义.同时给出了hot(hypergraph-basedoutliertest)算法,通过计算每个点的支持度、隶属度和规模偏差来检测离群点.该算法既能够处理数值属性,又能够处理类别属性.分析表明,该算法能有效地发现高维空间数据中的离群点.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133