全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Evaluation of Koala Scat Persistence and Detectability with Implications for Pellet-Based Fauna Census

DOI: 10.1155/2012/631856

Full-Text   Cite this paper   Add to My Lib

Abstract:

Establishing species distribution and population trends are basic requirements in conservation biology, yet acquiring this fundamental information is often difficult. Indirect survey methods that rely on fecal pellets (scats) can overcome some difficulties but present their own challenges. In particular, variation in scat detectability and decay rate can introduce biases. We studied how vegetation communities affect the detectability and decay rate of scats as exemplified by koalas Phascolarctos cinereus: scat detectability was highly and consistently dependent on ground layer complexity (introducing up to 16% non-detection bias); scat decay rates were highly heterogeneous within vegetation communities; exposure of scats to surface water and rain strongly accelerated scat decay rate and finally, invertebrates were found to accelerate scat decay rate markedly, but unpredictably. This last phenomenon may explain the high variability of scat decay rate within a single vegetation community. Methods to decrease biases should be evaluated when planning scat surveys, as the most appropriate method(s) will vary depending on species, scale of survey and landscape characteristics. Detectability and decay biases are both stronger in certain vegetation communities, thus their combined effect is likely to introduce substantial errors in scat surveys and this could result in inappropriate and counterproductive management decisions. 1. Introduction Knowledge of species abundance and distribution must underpin rational conservation and management decisions [1]. However, acquiring such critical information is far from a trivial undertaking [2, 3]. This is particularly true for cryptic animals (especially when they occur at low densities) [4], for which there is often a need to use indirect survey methods [5]. These indirect methods include, but are not limited to, sign surveys [6, 7]; of which scat (fecal pellet) survey is one of the oldest and most widely used indirect methods [8, 9]. More specifically, scat surveys are often used to determine habitat preferences and predict habitat quality (e.g., [10, 11]) and are thus commonly used for monitoring endangered wildlife [12] or managing game species [13]. However, variability of both scat detectability and decay rate has led to the expression of concerns regarding the reliability of such surveys [14]. Some sources of biases due to detectability and decay have been widely studied, and methods have been developed to compensate for them. For instance, scat detectability varies between observers but can be standardized by

References

[1]  IUCN, IUCN Red List Categories and Criteria: Version 3.1, IUCN Species Survival Commission, Gland, Switzerland, 2001.
[2]  A. J. Tyre, B. Tenhumberg, S. A. Field, D. Niejalke, K. Parris, and H. P. Possingham, “Improving precision and reducing bias in biological surveys: estimating false-negative error rates,” Ecological Applications, vol. 13, no. 6, pp. 1790–1801, 2003.
[3]  J. A. Royle and J. D. Nichols, “Estimating abundance from repeated presence-absence data or point counts,” Ecology, vol. 84, no. 3, pp. 777–790, 2003.
[4]  M. Kéry, “Inferring the absence of a species—a case study of snakes,” The Journal of Wildlife Management, vol. 66, no. 2, pp. 330–338, 2002.
[5]  G. J. Wilson and R. J. Delahay, “A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation,” Wildlife Research, vol. 28, no. 2, pp. 151–164, 2001.
[6]  K. C. Kendall, L. H. Metzgar, D. A. Patterson, and B. M. Steele, “Power of sign surveys to monitor population trends,” Ecological Applications, vol. 2, no. 4, pp. 422–430, 1992.
[7]  P. D. Walsh and L. J. T. White, “Evaluating the steady state assumption: simulations of gorilla nest decay,” Ecological Applications, vol. 15, no. 4, pp. 1342–1350, 2005.
[8]  L. J. Bennett, P. F. English, and R. McCain, “A study of deer populations by use of pellet-group counts,” The Journal of Wildlife Management, vol. 4, no. 4, pp. 398–403, 1940.
[9]  R. J. Putman, “Facts from faeces,” Mammal Review, vol. 14, no. 2, pp. 79–97, 1984.
[10]  E. Schüttler, J. T. Ibarra, B. Gruber, R. Rozzi, and K. Jax, “Abundance and habitat preferences of the Southernmost population of mink: implications for managing a recent island invasion,” Biodiversity and Conservation, vol. 19, no. 3, pp. 725–743, 2010.
[11]  D. Ramp and G. Coulson, “Density dependence in foraging habitat preference of Eastern grey kangaroos,” Oikos, vol. 98, no. 3, pp. 393–402, 2002.
[12]  H. S. Kuehl, A. Todd, C. Boesch, and P. D. Walsh, “Manipulating decay time for efficient large-mammal density estimation: gorillas and dung height,” Ecological Applications, vol. 17, no. 8, pp. 2403–2414, 2007.
[13]  C. C. Webbon, P. J. Baker, and S. Harris, “Faecal density counts for monitoring changes in red fox numbers in rural Britain,” Journal of Applied Ecology, vol. 41, no. 4, pp. 768–779, 2004.
[14]  W. M. Block, A. B. Franklin, J. P. Ward, J. L. Ganey, and G. C. White, “Design and implementation of monitoring studies to evaluate the success of ecological restoration on wildlife,” Restoration Ecology, vol. 9, no. 3, pp. 293–303, 2001.
[15]  D. J. Neff, “The pellet-group count technique for big game trend, census, and distribution: a review,” The Journal of Wildlife Management, vol. 32, no. 3, pp. 597–614, 1968.
[16]  G. Massei, P. Bacon, and P. V. Genov, “Fallow deer and wild boar pellet group disappearance in a Mediterranean area,” The Journal of Wildlife Management, vol. 62, no. 3, pp. 1086–1094, 1998.
[17]  A. C. Nchanji and A. J. Plumptre, “Seasonality in elephant dung decay and implications for censusing and population monitoring in South-Western cameroon,” African Journal of Ecology, vol. 39, no. 1, pp. 24–32, 2001.
[18]  C. A. McAlpine, J. R. Rhodes, M. E. Bowen et al., “Can multiscale models of species' distribution be generalized from region to region? A case study of the koala,” Journal of Applied Ecology, vol. 45, no. 2, pp. 558–567, 2008.
[19]  J. R. Rhodes, T. Wiegand, C. A. McAlpine et al., “Modeling species' distributions to improve conservation in semiurban landscapes: koala case study,” Conservation Biology, vol. 20, no. 2, pp. 449–459, 2006.
[20]  B. J. Sullivan, G. S. Baxter, and A. T. Lisle, “Low-density koala (Phascolarctos cinereus) populations in the mulgalands of South-West Queensland. III. Broad-scale patterns of habitat use,” Wildlife Research, vol. 30, no. 6, pp. 583–591, 2003.
[21]  D. Lunney, A. Matthews, C. Moon, and S. Ferrier, “Incorporating habitat mapping into practical koala conservation on private lands,” Conservation Biology, vol. 14, no. 3, pp. 669–680, 2000.
[22]  B. J. Sullivan, G. S. Baxter, A. T. Lisle, L. Pahl, and W. M. Norris, “Low-density koala (Phascolarctos cinereus) populations in the mulgalands of South-West Queensland. IV. Abundance and conservation status,” Wildlife Research, vol. 31, no. 1, pp. 19–29, 2004.
[23]  O. Woosnam-Merchez, R. H. Cristescu, D. Dique et al., “What faecal pellet surveys can and can’t reveal about the ecology of koalas Phascolarctos cinereus,” Australian Zoologist. In press.
[24]  G. A. Cochran and H. J. Stains, “Deposition and decomposition of fecal pellets by cottontails,” The Journal of Wildlife Management, vol. 25, no. 4, pp. 432–435, 1961.
[25]  R. W. Martin and K. Handasyde, The Koala: Natural History, Conservation and Management, Australian Natural History Series, University of New South Wales Press, Hong Kong, China, 1999.
[26]  W. Ellis, F. Carrick, P. Lundgren, A. Veary, and B. Cohen, “The use of faecal cuticle examination to determine the dietary composition of koalas,” Australian Zoologist, vol. 31, no. 1, pp. 127–133, 1999.
[27]  Queensland Herbarium, Regional Ecosystem Description Database (REDD), Department of Environment and Resource Management, Brisbane, Australia, 2009.
[28]  J. R. Rhodes, D. Lunney, C. Moon, A. Matthews, and C. A. Mcalpine, “The consequences of using indirect signs that decay to determine species' occupancy,” Ecography, vol. 34, no. 1, pp. 141–150, 2011.
[29]  D. Lunney, C. Moon, A. Matthews, and J. Turbill, Coffs Harbour City koala Plan of Management. Part B, Coffs Harbour Koala Study, NSW National Parks and Wildlife Service, Hurstville, Australia, 1999.
[30]  H. J. Preece, “Identifying hotspots for threats to koalas using spatial analysis,” 2007, http://www.mssanz.org.au/MODSIM07/papers/21_s46/IdentifyingHotspots_s46_Preece_.pdf.
[31]  G. Caughley, “Directions in conservation biology,” Journal of Animal Ecology, vol. 63, no. 2, pp. 215–244, 1994.
[32]  J. M. Scott, F. W. Davis, R. G. McGhie, R. G. Wright, C. Groves, and J. Estes, “Nature reserves: do they capture the full range of America's biological diversity?” Ecological Applications, vol. 11, no. 4, pp. 999–1007, 2001.
[33]  D. Press, D. F. Doak, and P. Steinberg, “The role of local government in the conservation of rare species,” Conservation Biology, vol. 10, no. 6, pp. 1538–1548, 1996.
[34]  R. Cristescu, W. Ellis, D. de Villiers, et al., “North Stradbroke Island: an island ark for Queensland's koalas population?” Proceedings of the Royal Society of Queensland, vol. 117, pp. 309–334, 2011.
[35]  T. R. New, “Concluding comment: looking to the future for moths,” Journal of Insect Conservation, vol. 8, no. 2-3, pp. 275–276, 2004.
[36]  I. F. B. Common and M. Horak, “Four new species of Telanepsia Turner (Lepidoptera: Oecophoridae) with larvae feeding on koala and possum scats,” Invertebrate Taxonomy, vol. 8, no. 4, pp. 809–828, 1994.
[37]  A. Melzer, M. A. Schneider, and D. Lamb, “Insects associated with the faecal pellets of the koala, Phascolarctos cinereus Goldfuss,” Australian Entomologist, vol. 21, no. 3, pp. 69–70, 1994.
[38]  IBM, PAWS2009, SPSS Inc., Chicago, Ill, USA.
[39]  D. G. Altman and J. M. Bland, “Statistics notes: standard deviations and standard errors,” British Medical Journal, vol. 331, no. 7521, article 903, 2005.
[40]  R. Peto, “Experimental survival curves for interval-censored data,” Journal of the Royal Statistical Society, Series C, vol. 22, no. 1, pp. 86–91, 1973.
[41]  S. L. Bellamy, Y. Li, L. M. Ryan, S. Lipsitz, M. J. Canner, and R. Wright, “Analysis of clustered and interval censored data from a community-based study in asthma,” Statistics in Medicine, vol. 23, no. 23, pp. 3607–3621, 2004.
[42]  K. Goethals, B. Ampe, D. Berkvens, H. Laevens, P. Janssen, and L. Duchateau, “Modeling interval-censored, custered cow udder quarter infection times through the shared gamma frailty model,” Journal of Agricultural, Biological, and Environmental Statistics, vol. 14, no. 1, pp. 1–14, 2009.
[43]  W. Weibull, “A statistical distribution function of wide applicability,” Journal of Applied Mechanics, vol. 18, pp. 293–297, 1951.
[44]  K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference, Springer, New York, NY, USA, 2nd edition, 2002.
[45]  D. R. Anderson, K. P. Burnham, W. R. Gould, and S. Cherry, “Concerns about finding effects that are actually spurious,” Wildlife Society Bulletin, vol. 29, no. 1, pp. 311–316, 2001.
[46]  V. F. Flack and P. C. Chang, “Frequency of selecting noise variables in subset regression analysis: a simulation study,” The American Statistician, vol. 41, no. 1, pp. 84–86, 1987.
[47]  O. C. Wallmo, A. W. Jackson, T. L. Hailey, and R. L. Carlisle, “Influence of rain on the count of deer pellet groups,” The Journal of Wildlife Management, vol. 26, no. 1, pp. 50–55, 1962.
[48]  L. R. Prugh and C. J. Krebs, “Snowshoe hare pellet-decay rates and aging in different habitats,” Wildlife Society Bulletin, vol. 32, no. 2, pp. 386–393, 2004.
[49]  G. S. Masunga, O. Andresen, J. E. Taylor, and S. S. Dhillion, “Elephant dung decomposition and coprophilous fungi in two habitats of semi-arid Botswana,” Mycological Research, vol. 110, no. 10, pp. 1214–1226, 2006.
[50]  G. Quinn and M. Keough, Experimental Design and Data Analysis for Biologists, Cambridge University Press, Cambridge, UK, 5th edition, 2006.
[51]  E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete observations,” Journal of the American Statistical Association, vol. 53, no. 282, pp. 457–481, 1958.
[52]  S. Phillips, J. Callaghan, and V. Thompson, “The tree species preferences of koalas (Phascolarctos cinereus) inhabiting forest and woodland communities on Quaternary deposits in the Port Stephens area, New South Wales,” Wildlife Research, vol. 27, no. 1, pp. 1–10, 2000.
[53]  S. Phillips and J. Callaghan, “The spot assessment technique: a tool for determining localised levels of habitat us by Koalas Phascolarctos cinereus,” Australian Zoologist, vol. 35, pp. 774–780, 2011.
[54]  R. Cristescu, “Fauna recolonisation of mine rehabilitation through the example of arboreal marsupials, with a particular focus on the koala Phascolarctos cinereus,” in School of Biological, Earth and Environmental Sciences, PhD Thesis University of New South Wales, Sydney, Australia, 2011.
[55]  W. Gu and R. K. Swihart, “Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models,” Biological Conservation, vol. 116, no. 2, pp. 195–203, 2004.
[56]  D. I. MacKenzie, “What are the issues with presence-absence data for wildlife managers?” The Journal of Wildlife Management, vol. 69, no. 3, pp. 849–860, 2005.
[57]  S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas, Introduction to Distance Sampling, Oxford University Press, London, UK, 2001.
[58]  R. F. W. Barnes, “Estimating forest elephant abundance by dung counts,” in Studying Elephants, K. Kangwana, Ed., pp. 28–37, African Wildlife Foundation, Nairobi, Kenya, 1996.
[59]  D. I. MacKenzie, J. D. Nichols, G. B. Lachman, S. Droege, A. A. Royle, and C. A. Langtimm, “Estimating site occupancy rates when detection probabilities are less than one,” Ecology, vol. 83, no. 8, pp. 2248–2255, 2002.
[60]  B. A. Wintle, M. A. McCarthy, K. M. Parris, and M. A. Burgman, “Precision and bias of methods for estimating point survey detection probabilities,” Ecological Applications, vol. 14, no. 3, pp. 703–712, 2004.
[61]  H. B. Stauffer, C. J. Ralph, and S. L. Miller, “Ranking habitat for marbled murrelets: new conservation approach for species with uncertain detection,” Ecological Applications, vol. 14, no. 5, pp. 1374–1383, 2004.
[62]  B. A. Wintle, R. P. Kavanagh, M. A. McCarthy, and M. A. Burgman, “Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials,” The Journal of Wildlife Management, vol. 69, no. 3, pp. 905–917, 2005.
[63]  D. Lunney, S. Phillips, J. Callaghan, and D. Coburn, “Determining the distribution of koala habitat across a shire as a basis for conservation: a case study from Port Stephens, New South Wales,” Pacific Conservation Biology, vol. 4, no. 3, pp. 186–196, 1998.
[64]  M. Hasegawa, Habitat Utilisation By Koalas (Phascolarctos cinereus) at Point Halloran, Queensland, The University of Queensland, Brisbane, Australia, 1995.
[65]  B. J. Sullivan, G. S. Baxter, and A. T. Lisle, “Low-density koala (Phascolarctos cinereus) populations in the mulgalands of South-West Queensland. I. Faecal pellet sampling protocol,” Wildlife Research, vol. 29, no. 5, pp. 455–462, 2002.
[66]  S. E. Laing, S. T. Buckland, R. W. Burn, D. Lambie, and A. Amphlett, “Dung and nest surveys: estimating decay rates,” Journal of Applied Ecology, vol. 40, no. 6, pp. 1102–1111, 2003.
[67]  J. F. Brodie, “An experimentally determined persistence-rate correction factor for scat-based abundance indices,” Wildlife Society Bulletin, vol. 34, no. 4, pp. 1216–1219, 2006.
[68]  C. N. Johnson and P. J. Jarman, “Macropod studies at Wallaby Creek. VI. A validation of the use of dung-pellet counts for measuring absolute densities of populations of macropodids,” Australian Wildlife Research, vol. 14, no. 2, pp. 139–145, 1987.
[69]  T. R. Stanley and J. A. Royle, “Estimating site occupancy and abundance using indirect detection indices,” The Journal of Wildlife Management, vol. 69, no. 3, pp. 874–883, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133