Four microsatellite loci were used to achieve genetic characterization of six stocks from Litopenaeus vannamei used for aquaculture in Cuba: second generation from first introduction (S2-1), first generation from the second one (S1-2), from the third one (S1-3), and the fourth one (S1-4) and the crossings from two parental population: first generation from the first with first generation from the third (S1-1 × S1-3) and first generation from the second with first generation from the third (S1-2 × S1-3). 66% (16/24) of genetic systems in total loci were in genetic disequilibrium. The four microsatellite loci were polymorphic for all six stocks. Major quantities of allelic variants correspond to locus Pvan 1758, which is at the same time that one where there are private alleles from first generation of the third. All Fst comparisons were significant. This indicates big differences between stocks. The highest values are those in which there is presence of the second introduction. This introduction and its descendants are also more consanguineous. 1. Introduction In Latin America shrimp-producer countries, the Pacific white shrimp, Litopenaeus vannamei, is the most representative species, with about 90% of production. Native from East Pacific, and from the tropical American continent, this species has shown an excellent culture adaptation and has been more resistant to salinity, oxygen, and temperature fluctuations. That is why, in the last twenty years, Litopenaeus vannamei, has been introduced in many culture programs, and nowadays it is the second culture after Penaeus monodon. In 2003 the first introduction of two stocks of White Pacific Shrimp, Litopenaeus vannamei, [1] was achieved in Cuba, imported from USA, Shrimp Improving System and so handling, nutrition, and health techniques are well established, as well as the assessment of genetic variation in farms that had before cultured the indigenous species Litopenaeus schmitti. In total, five stocks have been introduced, and all of them have been characterized using microsatellite techniques [2–4]. Genetic studies have a capital importance in shrimp industry, in order to determine genetic variability level either in natural or cultured populations, but mainly to know when the latter could be enriched with new specimens [5]. It is moreover important to know the structure of natural population from which those specimens will be taken [6] and also to have good markers that allow population and family studies. It is clear that the priority should be given to the domestication and handling of broodstocks
References
[1]
R. Tizol, B. Jaime, R. Laria, et al., “Introduction of Pacific White Shrimp L. vannamei in Cuba. Quarantine I step (In Spanish). Ocean Docs,” http://hdl.handle.net/1834/3588, 2004.
[2]
Y. J. Borrell, G. Espinosa, E. Vazquez, J. A. Sánchez, and G. Blanco, “Genetic variability of microsatellite loci in the two first stocks of Litopenaeus vannamei introduced to Cuba for aquaculture,” Revista de Investigaciones Marinas, vol. 27, no. 3, pp. 237–244, 2006 (Spanish).
[3]
R. Machado, Assessment of genetic variability in two lots of white shrimp, Litopenaeus vannamei (Boone, 1931) introduced to Cuba, M.S. thesis, International Fisheries Management. Department of Aquatic Biosciences. Norwegian College of Fishery Science. University of Tronso, Norway, Oslo, 2006.
[4]
A. Artiles, I. Rodríguez, A. Pérez, L. Pérez, and G. Espinosa, “Low genetic variability in the fifth introduction of Litopenaeus vannamei in Cuba, as estimated with microsatellite markers,” Biotecnología Aplicada, vol. 28, pp. 142–146, 2011.
[5]
D. K. García, M. A. Faggart, L. Rhoades et al., “Genetic diversity of cultured Penaeus vannamei shrimp using three molecular genetic techniques,” Molecular Marine Biology and Biotechnology, vol. 3, no. 5, pp. 270–280, 1994.
[6]
S. Sunden and K. Davis, “Evaluation of genetic variation in a domestic population of Penaeus vannamei (Boone): a comparison with three natural populations,” Aquaculture, vol. 97, no. 2-3, pp. 131–142, 1991.
[7]
R. A. Dunham, K. Majumdar, E. Hallerman, et al., “Review of the status of aquaculture genetics,” in Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium (February 2000, Bangkok, Thailand), R. P. Subasinghe, P. Bueno, M. J. Phillips, C. Hough, S. E. McGladdery, and J. R. Arthur, Eds., pp. 137–166, NACA/FAO, 2001.
[8]
G. Hulata, “Genetic manipulations in aquaculture: a review of stock improvement by classical and modern technologies,” Genetica, vol. 111, no. 1-3, pp. 155–173, 2001.
[9]
Z. J. Liu and J. F. Cordes, “DNA marker technologies and their applications in aquaculture genetics,” Aquaculture, vol. 238, no. 1–4, pp. 1–37, 2004.
[10]
G. M. Wolfus, G. K. García, and A. Alcivar-Warren, “Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs,” Aquaculture, vol. 152, no. 1–4, pp. 35–47, 1997.
[11]
P. Cruz, C. H. Mejía-Ruiz, R. Pérez-Enriquez, and A. M. Ibarra, “Isolation and characterization of microsatellites in Pacific white shrimp Penaeus (Litopenaeus) vannamei,” Molecular Ecology Notes, vol. 2, no. 3, pp. 239–241, 2002.
[12]
R. Peakall and P. E. Smouse, “GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research,” Molecular Ecology Notes, vol. 6, no. 1, pp. 288–295, 2006.
[13]
J. Goudet, “FSTAT, a program to estimate and test gene diversities and fixation indexes. (version 2.9.3),” Journal of Heredity, vol. 86, pp. 485–486, 2002.
[14]
S. Wright, “The interpretation of population structure by F-statistics with special regards to systems of mating,” Evolution, vol. 19, pp. 395–420, 1965.
[15]
F. Rousset, Genepop 4.1 for Windows/Linux/Mac OS X, 2008.
[16]
B. Rannala and J. L. Mountain, “Detecting immigration by using multilocus genotypes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 17, pp. 9197–9201, 1997.
[17]
S. Piry, A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin, and A. Estoup, “GeneClass 2: a software for genetic assignment and first-generation migrant detection,” Journal of Heredity, vol. 95, no. 6, pp. 536–539, 2004.
[18]
D. C. Quelle and K. F. Goodnight, “Estimating relatedness using genetic markers,” Evolution, vol. 43, no. 2, pp. 258–275, 1989.
[19]
GraphPad InStat version 5.04 for Windows, GraphPad Software, La Jolla California USA, http://www.graphpad.com.
[20]
R. Valles-Jiménez, P. Cruz, and R. Pérez-Enriquez, “Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama: microsatellite DNA variation,” Marine Biotechnology, vol. 6, no. 5, pp. 475–484, 2005.
[21]
P. Cruz, A. M. Ibarra, H. Mejia-Ruiz, P. M. Gaffney, and R. Pérez-Enríquez, “Genetic variability assessed by microsatellites in a breeding program of pacific white shrimp (Litopenaeus vannamei),” Marine Biotechnology, vol. 6, no. 2, pp. 157–164, 2004.
[22]
R. Pérez-Enríquez, F. Hernández-Martínez, and P. Cruz, “Genetic diversity status of White shrimp Penaeus (Litopenaeus) vannamei broodstock in Mexico,” Aquaculture, vol. 297, no. 1–4, pp. 44–50, 2009.
[23]
N. Bierne, I. Beuzart, V. Vonau, F. Bonhomme, and E. Bedier, “Microsatellite—associated heterosis in hatchery—propagated stokcs of the srimp Penaeus stylirostris,” Aquaculture, vol. 184, pp. 203–219, 2000.
[24]
Z. Xu, J. H. Primavera, L. D. de la Pena, et al., “Genetic diversity of white and cultured black tiguer shrimp (Penaeus monodon) in the Philippines using microsatellites,” Aquaculture, vol. 199, pp. 13–40, 2001.
[25]
E. Luvesuto, P. Dominguez de Freitas, and P. M. Galetti Junior, “Genetic variation in a closed line of the white shrimp Litopenaeus vannamei (Penaeidae),” Genetics and Molecular Biology, vol. 30, no. 4, pp. 1156–1160, 2007.
[26]
J. A. H. Benzie, “Population genetic structure in penaeid prawns,” Aquaculture Research, vol. 31, no. 1, pp. 95–119, 2000.
[27]
G. Espinosa López, R. Díaz Fernández, U. Becker Zú?iga, et al., “Population analysis of Cuban white shrimp Litopenaeus schmitti using allozymes as genetic markers,” Revista de Investigaciones Marinas, vol. 24, no. 1, pp. 11–16, 2003 (Spanish).
[28]
J. Soto-Hernández and J. M. Grijalva-Chon, “Genetic differentiation in hatchery strains and wild white shrimp Penaeus (Litopenaeus) vannamei (Boone, 1931) from northwest Mexico,” Aquaculture International, vol. 12, no. 6, pp. 593–601, 2004.
[29]
V. Sbordoni, E. de Matthaeis, M. Cobolli Sbordoni, G. La Rosa, and M. Mattoccia, “Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea, Decapoda),” Aquaculture, vol. 57, no. 1–4, pp. 239–251, 1986.
[30]
Y. J. Borrell, J. álvarez, E. Vázquez et al., “Applying microsatellites to the management of farmed turbot stocks (Scophthalmus maximus L.) in hatcheries,” Aquaculture, vol. 241, no. 1–4, pp. 133–150, 2004.
[31]
A. Artiles, M. Rubio, E. Gonzalez, R. Laria, and R. Silveira, “Crustacean virus of obligatory declaration by the OIE performance in cultured Litopenaeus vannamei in Cuba from 2003 to 2009,” Ocean Docs Digital Repository, vol. 28, no. 1, pp. 12–18, 2011 (Spanish).
[32]
R. Silveira-Coffigny, “Aquaculture health in Cuba,” in Proceedings of the 1st Meeting of Interamerican OIE Comité for Aquatic Animals, Panama, Panama City, January 2006.
[33]
S. Edmands, “Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence,” Evolution, vol. 53, no. 6, pp. 1757–1768, 1999.
[34]
M. Keller, J. Kollmann, and P. J. Edwards, “Genetic introgression from distant provenances reduces fitness in local weed populations,” Journal of Applied Ecology, vol. 37, no. 4, pp. 647–659, 2000.
[35]
S. Granier, C. Audet, and L. Bernatchez, “Heterosis and outbreeding depression between strains of young-of the-year brook trout (Salvelinus fontinalis),” Canadian Journal of Zoology, vol. 89, pp. 190–198, 2011.