全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
HPB Surgery  2012 

Anesthetic Considerations in Hepatectomies under Hepatic Vascular Control

DOI: 10.1155/2012/720754

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Hazards of liver surgery have been attenuated by the evolution in methods of hepatic vascular control and the anesthetic management. In this paper, the anesthetic considerations during hepatic vascular occlusion techniques were reviewed. Methods. A Medline literature search using the terms “anesthetic,” “anesthesia,” “liver,” “hepatectomy,” “inflow,” “outflow occlusion,” “Pringle,” “hemodynamic,” “air embolism,” “blood loss,” “transfusion,” “ischemia-reperfusion,” “preconditioning,” was performed. Results. Task-orientated anesthetic management, according to the performed method of hepatic vascular occlusion, ameliorates the surgical outcome and improves the morbidity and mortality rates, following liver surgery. Conclusions. Hepatic vascular occlusion techniques share common anesthetic considerations in terms of preoperative assessment, monitoring, induction, and maintenance of anesthesia. On the other hand, the hemodynamic management, the prevention of vascular air embolism, blood transfusion, and liver injury are plausible when the anesthetic plan is scheduled according to the method of hepatic vascular occlusion performed. 1. Introduction Hepatectomy is one of the therapies available for benign and malignant liver disease. Although liver resections have been associated with high mortality and morbidity rates, recent advances in anesthetic and surgical management have significantly reduced the operative risk. The techniques of vascular control during hepatectomy are highly demanding and should be performed under special anesthetic considerations. Hepatic vascular control methods can be categorized as those involving occlusion of liver inflow and those involving occlusion of both liver inflow and outflow. They can be summarized as following.(1)Inflow vascular occlusion.(A)Hepatic pedicle occlusion:(a)Continuous Pringle maneuver (CPM),(b)intermittent Pringle maneuver (IPM).(B)Selective inflow occlusion.(2)Inflow and outflow vascular exclusion(A) Total hepatic vascular exclusion (THVE),(B) inflow occlusion with extraparenchymal control of the major hepatic veins: with selective hepatic vascular exclusion (SHVE). When performing these techniques, the conduct of anesthesia should take into account hemodynamic management, risks of vascular air embolism, ischemia reperfusion liver injury, intraoperative blood loss, and the need for transfusion, factors which usually complicate hepatic vascular control methods. Special attention should also be paid to the preoperative assessment and induction of anesthesia, as patients undergoing liver resection

References

[1]  J. A. Del Olmo, B. Flor-Lorente, B. Flor-Civera et al., “Risk factors for nonhepatic surgery in patients with cirrhosis,” World Journal of Surgery, vol. 27, no. 6, pp. 647–652, 2003.
[2]  L. Dagher and K. Moore, “The hepatorenal syndrome,” Gut, vol. 49, no. 5, pp. 729–737, 2001.
[3]  A. T. Mazzeo, T. Lucanto, and L. B. Santamaria, “Hepatopulmonary syndrome: a concern for the anesthetist? Pre-operative evaluation of hypoxemic patients with liver disease,” Acta Anaesthesiologica Scandinavica, vol. 48, no. 2, pp. 178–186, 2004.
[4]  P. Ginès, M. Guevara, V. Arroyo, and J. Rodés, “Hepatorenal syndrome,” The Lancet, vol. 362, no. 9398, pp. 1819–1827, 2003.
[5]  F. Saner, “Kidney failure following liver resection,” Transplantation Proceedings, vol. 40, no. 4, pp. 1221–1224, 2008.
[6]  K. Slankamenac, S. Breitenstein, U. Held, B. Beck-Schimmer, M. A. Puhan, and P. A. Clavien, “Development and validation of a prediction score for postoperative acute renal failure following liver resection,” Annals of Surgery, vol. 250, no. 5, pp. 720–727, 2009.
[7]  O. Picker, C. Beck, and B. Pannen, “Liver protection in the perioperative setting,” Best Practice and Research, vol. 22, no. 1, pp. 209–224, 2008.
[8]  E. Delva, Y. Camus, B. Nordlinger et al., “Vascular occlusions for liver resections. Operative management and tolerance to hepatic ischemia: 142 cases,” Annals of Surgery, vol. 209, no. 2, pp. 211–218, 1989.
[9]  J. Belghiti, R. Noun, R. Malafosse et al., “Continuous versus intermittent portal triad clamping for liver resection: a controlled study,” Annals of Surgery, vol. 229, no. 3, pp. 369–375, 1999.
[10]  N. D. Maynard, D. J. Bihari, R. N. Dalton, R. Beale, M. N. Smithies, and R. C. Mason, “Liver function and splanchnic ischemia in critically ill patients,” Chest, vol. 111, no. 1, pp. 180–187, 1997.
[11]  C. Ripoll, R. Yotti, J. Bermejo, and R. Ba?ares, “The heart in liver transplantation,” Journal of Hepatology, vol. 54, no. 4, pp. 810–822, 2011.
[12]  J. Etisham, M. Altieri, E. Salame, et al., “Coronary artery disease in orthotopic liver transplantation: pretransplant assessment and management,” Liver Transplantation, vol. 16, pp. 550–557, 2010.
[13]  A. Chévalier, “Anesthesia and hepatic resection,” Anesthesiology Rounds, vol. 4, pp. 1–6, 2005.
[14]  J. R. Ortiz, J. A. Percaz, and F. Carrascosa, “Cisatracurium,” Revista Espanola de Anestesiologia y Reanimacion, vol. 45, no. 6, pp. 242–247, 1998.
[15]  X. C. Weng, L. Zhou, Y. Y. Fu, S. M. Zhu, H. L. He, and J. Wu, “Dose requirements of continuous infusion of rocuronium and atracurium throughout orthotopic liver transplantation in humans,” Journal of Zhejiang University, Science B, vol. 6, no. 9, pp. 869–872, 2005.
[16]  I. Redai, J. Emond, and T. Brentjens, “Anesthetic considerations during liver surgery,” Surgical Clinics of North America, vol. 84, no. 2, pp. 401–411, 2004.
[17]  C. Gatecel, M. R. Losser, and D. Payen, “The postoperative effects of halothane versus isoflurane on hepatic artery and portal vein blood flow in humans,” Anesthesia & Analgesia, vol. 96, no. 3, pp. 740–745, 2003.
[18]  A. Hoetzel, S. Geiger, T. Loop et al., “Differential effects of volatile anesthetics on hepatic heme oxygenase- 1 Expression in the rat,” Anesthesiology, vol. 97, no. 5, pp. 1318–1321, 2002.
[19]  N. Kanaya, M. Nakayama, S. Fujita, and A. Namiki, “Comparison of the effects of sevoflurane, isoflurane and halothane on indocyanine green clearance,” British Journal of Anaesthesia, vol. 74, no. 2, pp. 164–167, 1995.
[20]  B. Beck-Schimmer, S. Breitenstein, S. Urech et al., “A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic,” Annals of Surgery, vol. 248, no. 6, pp. 909–916, 2008.
[21]  D. D. Koblin, “Characteristics and implications of desflurane metabolism and toxicity,” Anesthesia & Analgesia, vol. 75, supplement 4, pp. S10–S16, 1992.
[22]  J. S. Ko, M. S. Gwak, S. J. Choi et al., “The effects of desflurane and sevoflurane on hepatic and renal functions after right hepatectomy in living donors,” Transplant International, vol. 23, no. 7, pp. 736–744, 2010.
[23]  M. Arslan, O. Kurtipek, A. T. Dogan et al., “Comparison of effects of anaesthesia with desflurane and enflurane on liver function,” Singapore Medical Journal, vol. 50, no. 1, pp. 73–77, 2009.
[24]  B. Laviolle, C. Basquin, D. Aguillon, et al., “Effect of an anesthesia with propofol compared with desflurane on free radical production and liver function after partial hepatectomy,” Fundamental and Clinical Pharmacology. In press.
[25]  E. K. Abdalla, R. Noun, and J. Belghiti, “Hepatic vascular occlusion: which technique?” Surgical Clinics of North America, vol. 84, no. 2, pp. 563–585, 2004.
[26]  J. Belghiti, “Vascular isolation techniques in liver resection,” in Surgery of the Liver and the Biliary Tract, L. M. Blugmart, Ed., pp. 1715–1724, Churchill Livingstone, New York, NY, USA, 2001.
[27]  F. Decaillot, D. Cherqui, B. Leroux, et al., “Effects of portal triad clamping on hemodynamic conditions during laparoscopic liver resection,” British Journal of Anaesthesia, vol. 87, pp. 493–496, 2001.
[28]  E. Delva, Y. Camus, C. Paugam, R. Parc, C. Huguet, and A. Lienhart, “Hemodynamic effects of portal triad clamping in humans,” Anesthesia & Analgesia, vol. 66, no. 9, pp. 864–868, 1987.
[29]  D. Franco, “Liver surgery has become simpler,” European Journal of Anaesthesiology, vol. 19, no. 11, pp. 777–779, 2002.
[30]  R. M. Jones, C. E. Moulton, and K. J. Hardy, “Central venous pressure and its effect on blood loss during liver resection,” British Journal of Surgery, vol. 85, no. 8, pp. 1058–1060, 1998.
[31]  M. Johnson, R. Mannar, and A. V. O. Wu, “Correlation between blood loss and inferior vena caval pressure during liver resection,” British Journal of Surgery, vol. 85, no. 2, pp. 188–190, 1998.
[32]  P. J. Allen and W. R. Jarnagin, “Current status of hepatic resection,” Advances in Surgery, vol. 37, pp. 29–49, 2003.
[33]  V. E. Smyrniotis, G. G. Kostopanagiotou, J. C. Contis et al., “Selective hepatic vascular exclusion versus Pringle maneuver in major liver resections: prospective study,” World Journal of Surgery, vol. 27, no. 7, pp. 765–769, 2003.
[34]  J. A. Melendez, V. Arslan, M. E. Fischer et al., “Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia: blood loss, blood transfusion, and the risk of postoperative renal dysfunction,” Journal of the American College of Surgeons, vol. 187, no. 6, pp. 620–625, 1998.
[35]  G. Torzilli, M. Makuuchi, K. Inoue et al., “No-mortality liver resection for hepatocellular carcinoma in cirrhotic and noncirrhotic patients: is there a way? A prospective analysis of our approach,” Archives of Surgery, vol. 134, no. 9, pp. 984–992, 1999.
[36]  G. Torzilli, M. Makuuchi, Y. Midorikawa et al., “Liver resection without total vascular exclusion: hazardous or beneficial? An analysis of our experience,” Annals of Surgery, vol. 233, no. 2, pp. 167–175, 2001.
[37]  J. D. Cunningham, Y. Fong, C. Shriver, J. Melendez, W. L. Marx, and L. H. Blumgart, “One hundred consecutive hepatic resections: blood loss, transfusion, and operative technique,” Archives of Surgery, vol. 129, no. 10, pp. 1050–1056, 1994.
[38]  M. Shimoda, Y. Iwasaki, T. Okada, T. Sawada, and K. Kubota, “Protective effect of Sivelestat in a porcine hepatectomy model prepared using an intermittent Pringle method,” European Journal of Pharmacology, vol. 587, no. 1–3, pp. 248–252, 2008.
[39]  D. Eyraud, O. Richard, D. C. Borie, et al., “Hemodynamic and hormonal responses to the sudden interruption of caval flow: insights from a prospective study of hepatic vascular exclsion during major liver resections,” Anesthesia & Analgesia, vol. 95, pp. 1173–1178, 2002.
[40]  G. Biancofiore, L. A. H. Critchley, A. Lee et al., “Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery,” British Journal of Anaesthesia, vol. 102, no. 1, pp. 47–54, 2009.
[41]  H. Kjekshus, C. Risoe, T. Scholz, and O. A. Smiseth, “Regulation of hepatic vascular volume: contributions from active and passive mechanisms during catecholamine and sodium nitroprusside infusion,” Circulation, vol. 96, no. 12, pp. 4415–4423, 1997.
[42]  V. Krejci, L. B. Hiltebrand, and G. H. Sigurdsson, “Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis,” Critical Care Medicine, vol. 34, no. 5, pp. 1456–1463, 2006.
[43]  S. Klinzing, M. Simon, K. Reinhart, D. L. Bredle, and A. Meier-Hellmann, “High-dose vasopressin is not superior to norepinephrine in septic shock,” Critical Care Medicine, vol. 31, no. 11, pp. 2646–2650, 2003.
[44]  J. Polio, C. C. Sieber, E. Lerner, and R. J. Groszmann, “Cardiovascular hyporesponsiveness to norepinephrine, propranolol and nitroglycerin in portal-hypertensive and aged rats,” Hepatology, vol. 18, no. 1, pp. 128–136, 1993.
[45]  A. Castro, W. Jimenez, J. Claria et al., “Impaired responsiveness to angiotensin II in experimental cirrhosis: role of nitric oxide,” Hepatology, vol. 18, no. 2, pp. 367–372, 1993.
[46]  T. H. Swygert, L. C. Roberts, T. R. Valek et al., “Effect of intraoperative low-dose dopamine on renal function in liver transplant recipients,” Anesthesiology, vol. 75, no. 4, pp. 571–576, 1991.
[47]  G. Della Rocca, L. Pompei, M. G. Costa et al., “Fenoldopam mesylate and renal function in patients undergoing liver transplantation: a randomized, controlled pilot trial,” Anesthesia & Analgesia, vol. 99, no. 6, pp. 1604–1609, 2004.
[48]  N. Brienza, V. Malcangi, L. Dalfino et al., “A comparison between fenoldopam and low-dose dopamine in early renal dysfunction of critically ill patients,” Critical Care Medicine, vol. 34, no. 3, pp. 707–714, 2006.
[49]  T. Restuccia, R. Ortega, M. Guevara et al., “Effects of treatment of hepatorenal syndrome before transplantation on posttransplantation outcome. A case-control study,” Journal of Hepatology, vol. 40, no. 1, pp. 140–146, 2004.
[50]  L. Hannoun, L. Delrivière, P. Gibbs, D. Borie, J. C. Vaillant, and E. Delva, “Major extended hepatic resections in diseased livers using hypothermic protection: preliminary results from the first 12 patients treated with this new technique,” Journal of the American College of Surgeons, vol. 183, no. 6, pp. 597–605, 1996.
[51]  M. Miyazaki, H. Ito, K. Nakagawa et al., “Aggressive surgical resection for hepatic metastases involving the inferior vena cava,” American Journal of Surgery, vol. 177, no. 4, pp. 294–298, 1999.
[52]  M. Cescon, G. Vetrone, G. L. Grazi et al., “Trends in perioperative outcome after hepatic resection: analysis of 1500 consecutive unselected cases over 20 years,” Annals of Surgery, vol. 249, no. 6, pp. 995–1002, 2009.
[53]  D. Cherqui, B. Malassagne, P. I. Colau, F. Brunetti, N. Rotman, and P. L. Fagniez, “Hepatic vascular exclusion with preservation of the caval flow for liver resections,” Annals of Surgery, vol. 230, no. 1, pp. 24–30, 1999.
[54]  V. E. Smyrniotis, G. G. Kostopanagiotou, E. L. Gamaletsos et al., “Total versus selective hepatic vascular exclusion in major liver resections,” American Journal of Surgery, vol. 183, no. 2, pp. 173–178, 2002.
[55]  J. Belghiti, R. Noun, E. Zante, T. Ballet, and A. Sauvanet, “Portal triad clamping or hepatic vascular exclusion for major liver resection: a controlled study,” Annals of Surgery, vol. 224, no. 2, pp. 155–161, 1996.
[56]  D. Elias, P. Dubé, S. Bonvalot, B. Debanne, B. Plaud, and P. Lasser, “Intermittent complete vascular exclusion of the liver during hepatectomy: technique and indications,” Hepato-Gastroenterology, vol. 45, no. 20, pp. 389–395, 1998.
[57]  V. Smyrniotis, G. Kostopanagiotou, K. Theodoraki, D. Tsantoulas, and J. C. Contis, “The role of central venous pressure and type of vascular control in blood loss during major liver resections,” American Journal of Surgery, vol. 187, no. 3, pp. 398–402, 2004.
[58]  W. Zhou, A. Li, Z. Pan et al., “Selective hepatic vascular exclusion and Pringle maneuver: a comparative study in liver resection,” European Journal of Surgical Oncology, vol. 34, no. 1, pp. 49–54, 2008.
[59]  S. J. Moug, D. Smith, E. Leen, W. J. Angerson, and P. G. Horgan, “Selective continuous vascular occlusion and perioperative fluid restriction in partial hepatectomy. Outcomes in 101 consecutive patients,” European Journal of Surgical Oncology, vol. 33, no. 8, pp. 1036–1041, 2007.
[60]  M. A. Mirski, A. V. Lele, L. Fitzsimmons, and T. J. K. Toung, “Diagnosis and treatment of vascular air embolism,” Anesthesiology, vol. 106, no. 1, pp. 164–177, 2007.
[61]  S. Y. Lee, B. I. W. Choi, J. S. Kim, and K. S. Park, “Paradoxical air embolism during hepatic resection,” British Journal of Anaesthesia, vol. 88, no. 1, pp. 136–138, 2002.
[62]  Z. M. Hu, W. D. Wu, C. W. Zhang, Y. H. Zhang, Z. Y. Ye, and D. J. Zhao, “Selective exclusion of hepatic outflow and inflow in hepatectomy for huge hepatic tumor,” Zhonghua Zhong Liu Za Zhi, vol. 30, no. 8, pp. 620–622, 2008.
[63]  Z. Y. Pan, Y. Yang, W. P. Zhou, A. J. Li, S. Y. Fu, and M. C. Wu, “Clinical application of hepatic venous occlusion for hepatectomy,” Chinese Medical Journal, vol. 121, no. 9, pp. 806–810, 2008.
[64]  W. Zhou, A. Li, Z. Pan et al., “Selective hepatic vascular exclusion and Pringle maneuver: a comparative study in liver resection,” European Journal of Surgical Oncology, vol. 34, no. 1, pp. 49–54, 2008.
[65]  T. S. Helling, B. Blondeau, and B. J. Wittek, “Perioperative factors and outcome associated with massive blood loss during major liver resections,” HPB, vol. 6, no. 3, pp. 181–185, 2004.
[66]  T. J. K. Toung, M. I. Rossberg, and G. M. Hutchins, “Volume of air in a lethal venous air embolism,” Anesthesiology, vol. 94, no. 2, pp. 360–361, 2001.
[67]  H. S. Martland, “Air embolism. Fatal air embolism due to powder insufflators used in gynecological treatments,” The American Journal of Surgery, vol. 68, no. 2, pp. 164–169, 1945.
[68]  R. A. Jaffe, L. C. Siegel, I. Schnittger, J. W. Propst, and J. G. Brock-Utne, “Epidural air injection assessed by transesophageal echocardiography,” Regional Anesthesia, vol. 20, no. 2, pp. 152–155, 1995.
[69]  H. Furuya, T. Suzuki, and F. Okumura, “Detection of air embolism by transesophageal echocardiography,” Anesthesiology, vol. 58, no. 2, pp. 124–129, 1983.
[70]  J. L. Chang, M. S. Albin, L. Bunegin, and T. K. Hung, “Analysis and comparison of venous air embolism detection methods,” Neurosurgery, vol. 7, no. 2, pp. 135–141, 1980.
[71]  G. Thiéry, F. Le Corre, P. Kirstetter, A. Sauvanett, J. Belghiti, and J. Marty, “Paradoxical air embolism during orthoptic liver transplantation: diagnosis by transoesophageal echocardiography,” European Journal of Anaesthesiology, vol. 16, no. 5, pp. 342–345, 1999.
[72]  H. Bismuth, D. Castaing, and O. J. Garden, “Major hepatic resection under total vascular exclusion,” Annals of Surgery, vol. 210, no. 1, pp. 13–19, 1989.
[73]  Y. Hatano, M. Murakawa, H. Segawa, Y. Nishida, and K. Mori, “Venous air embolism during hepatic resection,” Anesthesiology, vol. 73, no. 6, pp. 1282–1285, 1990.
[74]  V. Melhorn, E. J. Burke, and B. D. Butler, “Body position does not affect the hemodynamic response to venous air embolism in dogs,” Anesthesia & Analgesia, vol. 79, pp. 734–739, 1994.
[75]  C. A. Moulton, A. K. K. Chui, D. Mann, P. B. S. Lai, P. T. Chui, and W. Y. Lau, “Does patient position during liver surgery influence the risk of venous air embolism?” American Journal of Surgery, vol. 181, no. 4, pp. 366–367, 2001.
[76]  M. Booke, H. G. Bone, H. Van Aken, F. Hinder, U. Jahn, and J. Meyer, “Venous paradoxical air embolism,” Anaesthesist, vol. 48, no. 4, pp. 236–241, 1999.
[77]  G. G. Jamieson, L. Corbel, J. P. Campion, and B. Launois, “Major liver resection without a blood transfusion: is it a realistic objective?” Surgery, vol. 112, no. 1, pp. 32–36, 1992.
[78]  S. C. Katz, J. Shia, K. H. Liau et al., “Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma,” Annals of Surgery, vol. 249, no. 4, pp. 617–623, 2009.
[79]  J. L. Carson, H. Noveck, J. A. Berlin, and S. A. Gould, “Mortality and morbidity in patients with very low postoperative Hb levels who decline blood transfusion,” Transfusion, vol. 42, no. 7, pp. 812–818, 2002.
[80]  J. L. Carson, S. Hill, P. Carless, P. Hébert, and D. Henry, “Transfusion Triggers: a systematic review of the literature,” Transfusion Medicine Reviews, vol. 16, no. 3, pp. 187–199, 2002.
[81]  J. P. Arnoletti and J. Brodsky, “Reduction of transfusion requirements during major hepatic resection for metastatic disease,” Surgery, vol. 125, no. 2, pp. 166–171, 1999.
[82]  E. Dixon, C. M. Vollmer, O. F. Bathe, and F. Sutherland, “Vascular occlusion to decrease blood loss during hepatic resection,” American Journal of Surgery, vol. 190, no. 1, pp. 75–86, 2005.
[83]  K. Man, S. T. Fan, I. O. L. Ng, C. M. Lo, C. L. Liu, and J. Wong, “Prospective evaluation of pringle maneuver in hepatectomy for liver tumors by a randomized study,” Annals of Surgery, vol. 226, no. 6, pp. 704–713, 1997.
[84]  K. Man, C. M. Lo, C. L. Liu et al., “Effects of the intermittent Pringle manoeuvre on hepatic gene expression and ultrastructure in a randomized clinical study,” British Journal of Surgery, vol. 90, no. 2, pp. 183–189, 2003.
[85]  K. Man, S. T. Fan, I. O. L. Ng et al., “Tolerance of the liver to intermittent Pringle maneuver in hepatectomy for liver tumors,” Archives of Surgery, vol. 134, no. 5, pp. 533–539, 1999.
[86]  M. Makuuchi, T. Mori, P. Guneven, et al., “Safety of Hemihepatic vascular control technique for hepatic resection,” The American Journal of Surgery, vol. 164, pp. 155–158, 1987.
[87]  W. D. Wang, L. J. Liang, X. Q. Huang, and X. Y. Yin, “Low central venous pressure reduces blood loss in hepatectomy,” World Journal of Gastroenterology, vol. 12, no. 6, pp. 935–939, 2006.
[88]  A. Y. C. Wong, M. G. Irwin, T. W. C. Hui, S. K. Y. Fung, S. T. Fan, and E. S. K. Ma, “Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy,” Canadian Journal of Anesthesia, vol. 50, no. 1, pp. 14–20, 2003.
[89]  J. P. A. Lodge, S. Jonas, E. Oussoultzoglou et al., “Recombinant coagulation factor VIIa in major liver resection: a randomized, placebo-controlled, double-blind clinical trial,” Anesthesiology, vol. 102, no. 2, pp. 269–275, 2005.
[90]  C. Lentschner, K. Roche, and Y. Ozier, “A review of aprotinin in orthotopic liver transplantation: can its harmful effects offset its beneficial effects?” Anesthesia & Analgesia, vol. 100, pp. 1248–1255, 2005.
[91]  I. T. A. Pereboom, M. T. De Boer, R. J. Porte, and I. Q. Molenaar, “Aprotinin and nafamostat mesilate in liver surgery: effect on blood loss,” Digestive Surgery, vol. 24, no. 4, pp. 282–287, 2007.
[92]  C. C. Wu, W. M. Ho, S. B. Cheng et al., “Perioperative parenteral tranexamic acid in liver tumor resection: a prospective randomized trial toward "blood transfusion"-free hepatectomy,” Annals of Surgery, vol. 243, no. 2, pp. 173–180, 2006.
[93]  D. A. Henry, P. A. Carless, A. J. Moxey et al., “Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD001886, 2007.
[94]  D. R. Spahn and M. Casutt, “Eliminating blood transfusions: new aspects and perspectives,” Anesthesiology, vol. 93, no. 1, pp. 242–255, 2000.
[95]  D. R. Spahn and R. Kocian, “Artificial O2 carriers: status in 2005,” Current Pharmaceutical Design, vol. 11, no. 31, pp. 4099–4114, 2005.
[96]  D. R. Spahn and R. Kocian, “The place of artificial oxygen carriers in reducing allogeneic blood transfusions and augmenting tissue oxygenation,” Canadian Journal of Anesthesia, vol. 50, supplement 6, pp. S41–S47, 2003.
[97]  C. Pulitanò, M. Arru, L. Bellio, S. Rossini, G. Ferla, and L. Aldrighetti, “A risk score for predicting perioperative blood transfusion in liver surgery,” British Journal of Surgery, vol. 94, no. 7, pp. 860–865, 2007.
[98]  C. C. Wang, S. G. Iyer, J. K. Low et al., “Perioperative factors affecting long-term outcomes of 473 consecutive patients undergoing hepatectomy for hepatocellular carcinoma,” Annals of Surgical Oncology, vol. 16, no. 7, pp. 1832–1842, 2009.
[99]  N. Shinozuka, I. Koyama, T. Arai et al., “Autologous blood transfusion in patients with hepatocellular carcinoma undergoing hepatectomy,” American Journal of Surgery, vol. 179, no. 1, pp. 42–45, 2000.
[100]  P. M. Kopko and P. V. Holland, “Transfusion-related acute lung injury,” British Journal of Haematology, vol. 105, no. 2, pp. 322–329, 1999.
[101]  A. B. Benson, J. R. Burton, G. L. Austin et al., “Differential effects of plasma and red blood cell transfusions on acute lung injury and infection risk following liver transplantation,” Liver Transplantation, vol. 17, no. 2, pp. 149–158, 2011.
[102]  H. Nakazawa, H. Ohnishi, H. Okazaki et al., “Impact of fresh-frozen plasma from male-only donors versus mixed-sex donors on postoperative respiratory function in surgical patients: a prospective case-controlled study,” Transfusion, vol. 49, no. 11, pp. 2434–2441, 2009.
[103]  M. Palfi, S. Berg, J. Ernerudh, and G. Berlin, “A randomized controlled trial of transfusion-related acute lung injury: is plasma from multiparous blood donors dangerous?” Transfusion, vol. 41, no. 3, pp. 317–322, 2001.
[104]  A. F. Eder, R. Herron, A. Strupp et al., “Transfusion-related acute lung injury surveillance (2003–2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross,” Transfusion, vol. 47, no. 4, pp. 599–607, 2007.
[105]  R. Kong, Y. Gao, B. Sun, et al., “The stategy of combined ischemia preconditioning and salvianolic acid-B pretreatment to prevent hepatic ischemia-reperfusion injury in rats,” Digestive Diseases and Sciences, vol. 54, no. 12, pp. 2568–2576, 2009.
[106]  C. D. Collard and S. Gelman, “Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury,” Anesthesiology, vol. 94, no. 6, pp. 1133–1138, 2001.
[107]  C. Eipel, M. Glanemann, A. K. Nuessler, M. D. Menger, P. Neuhaus, and B. Vollmar, “Ischemic preconditioning impairs liver regeneration in extended reduced-size livers,” Annals of Surgery, vol. 241, no. 3, pp. 477–484, 2005.
[108]  V. Smyrniotis, K. Theodoraki, N. Arkadopoulos et al., “Ischemic preconditioning versus intermittent vascular occlusion in liver resections performed under selective vascular exclusion: a prospective randomized study,” American Journal of Surgery, vol. 192, no. 5, pp. 669–674, 2006.
[109]  S. Suzuki, K. Inaba, and H. Konno, “Ischemic preconditioning in hepatic ischemia and reperfusion,” Current Opinion in Organ Transplantation, vol. 13, no. 2, pp. 142–147, 2008.
[110]  C. E. Murry, R. B. Jennings, and K. A. Reimer, “Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium,” Circulation, vol. 74, no. 5, pp. 1124–1136, 1986.
[111]  J. M. Lloris-Carsi, D. Cejalvo, L. H. Toledo-Pereyra, M. A. Calvo, and S. Suzuki, “Preconditioning: effect upon lesion modulation in warm liver ischemia,” Transplantation Proceedings, vol. 25, no. 6, pp. 3303–3304, 1993.
[112]  P. A. Clavien, S. Yadav, D. Sindram, and R. C. Bentley, “Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans,” Annals of Surgery, vol. 232, no. 2, pp. 155–162, 2000.
[113]  M. Arai, K. Tejima, H. Ikeda, et al., “Ischemic preconditioning in liver pathophysiology,” Journal of Gastroenterology and Hepatology, vol. 13, pp. 657–670, 2007.
[114]  O. Heizmann, F. Loehe, A. Volk, and R. J. Schauer, “Ischemic preconditioning improves postoperative outcome after liver resections: a randomized controlled study,” European Journal of Medical Research, vol. 13, no. 2, pp. 79–86, 2008.
[115]  N. Arkadopoulos, G. Kostopanagiotou, K. Theodoraki et al., “Ischemic preconditioning confers antiapoptotic protection during major hepatectomies performed under combined inflow and outflow exclusion of the liver. A randomized clinical trial,” World Journal of Surgery, vol. 33, no. 9, pp. 1909–1915, 2009.
[116]  D. Azoulay, M. Del Gaudio, P. Andreani et al., “Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft's preservation and function: the Ying and the Yang,” Annals of Surgery, vol. 242, no. 1, pp. 133–139, 2005.
[117]  B. A. Van Wagensveld, T. M. Van Gulik, H. C. Gelderblom et al., “Prolonged continuous or intermittent vascular inflow occlusion during hemihepatectomy in pigs,” Annals of Surgery, vol. 229, no. 3, pp. 376–384, 1999.
[118]  H. Wang, Z. Xue, Q. Wang, et al., “Propofol protects hepatic L02 cells from hydrogen peroxide-induced apoptosis via activation of extracellular signal-regulated kinases pathway,” Anesthesia & Analgesia, vol. 107, pp. 534–540, 2008.
[119]  R. O. Giovanardi, E. L. Rhoden, C. T. Cerski, M. Salvador, and A. N. Kalil, “Pharmacological preconditioning using intraportal infusion of L-arginine protects against hepatic ischemia reperfusion injury,” Journal of Surgical Research, vol. 155, no. 2, pp. 244–253, 2009.
[120]  I. R. Lai, K. J. Chang, H. W. Tsai, and C. F. Chen, “Pharmacological preconditioning with simvastatin protects liver from ischemia-reperfusion injury by heme oxygenase-1 induction,” Transplantation, vol. 85, no. 5, pp. 732–738, 2008.
[121]  M. A. Hossain, H. Wakabayashi, K. Izuishi, K. Okano, S. Yachida, and H. Maeta, “The role of prostaglandins in liver ischemia-reperfusion injury,” Current Pharmaceutical Design, vol. 12, no. 23, pp. 2935–2951, 2006.
[122]  F. S. Ramalho, I. Alfany-Fernandez, A. Casillas-Ramirez et al., “Are angiotensin II receptor antagonists useful strategies in steatotic and nonsteatotic livers in conditions of partial hepatectomy under ischemia-reperfusion?” Journal of Pharmacology and Experimental Therapeutics, vol. 329, no. 1, pp. 130–140, 2009.
[123]  V. Smyrniotis, C. Farantos, G. Kostopanagiotou, and N. Arkadopoulos, “Vascular control during hepatectomy: review of methods and results,” World Journal of Surgery, vol. 29, no. 11, pp. 1384–1396, 2005.
[124]  J. Figueras, L. Llado, D. Ruiz et al., “Complete versus selective portal triad clamping for minor liver resections: a prospective randomized trial,” Annals of Surgery, vol. 241, no. 4, pp. 582–590, 2005.
[125]  G. Nuzzo, F. Giuliante, I. Giovannini, M. Vellone, G. De Cosmo, and G. Capelli, “Liver resections with or without pedicle clamping,” American Journal of Surgery, vol. 181, no. 3, pp. 238–246, 2001.
[126]  R. Omar Giovanardi, H. Jo?o Giovanardi, M. Bozetti, R. Garcia, and L. Pereira Lima, “Intermittent total pedicular clamping in hepatic resections in non-cirrhotic patients,” Hepato-Gastroenterology, vol. 49, no. 45, pp. 764–769, 2002.
[127]  S. Y. Fu, E. C. H. Lai, A. J. Li et al., “Liver resection with selective hepatic vascular exclusion: a cohort study,” Annals of Surgery, vol. 249, no. 4, pp. 624–627, 2009.
[128]  Y. Ishizaki, J. Yoshimoto, H. Sugo, K. Miwa, and S. Kawasaki, “Hepatectomy using traditional Péan clamp-crushing technique under intermittent Pringle maneuver,” American Journal of Surgery, vol. 196, no. 3, pp. 353–357, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133