全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
HPB Surgery  2012 

ICAM-1 Upregulation in Ethanol-Induced Fatty Murine Livers Promotes Injury and Sinusoidal Leukocyte Adherence after Transplantation

DOI: 10.1155/2012/480893

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Transplantation of ethanol-induced steatotic livers causes increased graft injury. We hypothesized that upregulation of hepatic ICAM-1 after ethanol produces increased leukocyte adherence, resulting in increased generation of reactive oxygen species (ROS) and injury after liver transplantation (LT). Methods. C57BL/6 wildtype (WT) and ICAM-1 knockout (KO) mice were gavaged with ethanol (6 g/kg) or water. LT was then performed into WT recipients. Necrosis and apoptosis, 4-hydroxynonenal (4-HNE) immunostaining, and sinusoidal leukocyte movement by intravital microscopy were assessed. Results. Ethanol gavage of WT mice increased hepatic triglycerides 10-fold compared to water treatment . ICAM-1 also increased, but ALT was normal. At 8 h after LT of WT grafts, ALT increased 2-fold more with ethanol than water treatment . Compared to ethanol-treated WT grafts, ALT from ethanol-treated KO grafts was 78% less . Apoptosis also decreased by 75% , and 4-HNE staining after LT was also decreased in ethanol-treated KO grafts compared to WT. Intravital microscopy demonstrated a 2-fold decrease in leukocyte adhesion in KO grafts compared to WT grafts. Conclusions. Increased ICAM-1 expression in ethanol-treated fatty livers predisposes to leukocyte adherence after LT, which leads to a disturbed microcirculation, oxidative stress and graft injury. 1. Introduction After cold ischemic liver storage for transplantation, reperfusion injury may lead to poor initial graft function and even graft failure. This injury is more severe and causes increased morbidity and mortality when steatotic donor livers are used [1, 2]. Because of the increasing incidence of nonalcoholic steatohepatitis in the general population and the association of vehicular accidents with steatosis-causing alcohol use and abuse, an important fraction of potential human donor livers is steatotic. Such marginal steatotic livers are increasingly used as liver grafts because of the liver donor shortage and the expanding waiting list for liver transplantation. Sinusoidal endothelial cells and hepatocytes are particularly susceptible to ischemia/reperfusion (I/R) injury and consequent apoptotic and necrotic cell death, as shown by both in vitro and in vivo studies [3–6]. After liver I/R, recruitment of neutrophils and other inflammatory cells aggravates injury [7, 8]. Neutrophil recruitment also contributes to liver injury after endotoxin, sepsis, and chronic ethanol treatment [9–12]. Hepatic infiltration with neutrophils results in production of reactive oxygen species (ROS) and oxidative stress,

References

[1]  W. A. Marsman, R. H. Wiesner, L. Rodriguez et al., “Use of fatty donor liver is associated with diminished early patient and graft survival,” Transplantation, vol. 62, no. 9, pp. 1246–1251, 1996.
[2]  L. McCormack, H. Petrowsky, W. Jochum, B. Mullhaupt, M. Weber, and P. A. Clavien, “Use of severely steatotic grafts in liver transplantation: a matched case-control study,” Annals of Surgery, vol. 246, no. 6, pp. 940–946, 2007.
[3]  J. C. Caldwell-Kenkel, R. T. Currin, Y. Tanaka, R. G. Thurman, and J. J. Lemasters, “Reperfusion injury to endothelial cells following cold ischemic storage of rat livers,” Hepatology, vol. 10, no. 3, pp. 292–299, 1989.
[4]  J. S. Kim, L. He, and J. J. Lemasters, “Mitochondrial permeability transition: a common pathway to necrosis and apoptosis,” Biochemical and Biophysical Research Communications, vol. 304, no. 3, pp. 463–470, 2003.
[5]  H. A. Rüdiger, R. Graf, and P. A. Clavien, “Liver ischemia: apoptosis as a central mechanism of injury,” Journal of Investigative Surgery, vol. 16, no. 3, pp. 149–159, 2003.
[6]  Y. Takei, I. Marzi, W. S. Gao, G. J. Gores, J. J. Lemasters, and R. G. Thurman, “Leukocyte adhesion and cell death following orthotopic liver transplantation in the rat,” Transplantation, vol. 51, no. 5, pp. 959–965, 1991.
[7]  H. Jaeschke, A. Farhood, and C. W. Smith, “Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo,” The FASEB Journal, vol. 4, no. 15, pp. 3355–3359, 1990.
[8]  H. Jaeschke, “Mechanisms of reperfusion injury after warm ischemia of the liver,” Journal of Hepato-Biliary-Pancreatic Surgery, vol. 5, no. 4, pp. 402–408, 1998.
[9]  A. P. Bautista, “Chronic alcohol intoxication induces hepatic injury through enhanced macrophage inflammatory protein-2 production and intercellular adhesion molecule-1 expression in the liver,” Hepatology, vol. 25, no. 2, pp. 335–342, 1997.
[10]  J. S. Gujral, J. Liu, A. Farhood, J. A. Hinson, and H. Jaeschke, “Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice,” American Journal of Physiology, vol. 286, no. 3, pp. G499–G507, 2004.
[11]  H. Jaeschke, A. Farhood, and C. W. Smith, “Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism,” American Journal of Physiology, vol. 261, no. 6, part 1, pp. G1051–G1056, 1991.
[12]  R. G. Molnar, P. Wang, A. Ayala, P. E. Ganey, R. A. Roth, and I. H. Chaudry, “The role of neutrophils in producing hepatocellular dysfunction during the hyperdynamic stage of sepsis in rats,” Journal of Surgical Research, vol. 73, no. 2, pp. 117–122, 1997.
[13]  A. R. Nagendra, J. K. Mickelson, and C. W. Smith, “CD18 integrin and CD54-dependent neutrophil adhesion to cytokine-stimulated human hepatocytes,” American Journal of Physiology, vol. 272, no. 3, part 1, pp. G408–G416, 1997.
[14]  H. Jaeschke, Y. S. Ho, M. A. Fisher, J. A. Lawson, and A. Farhood, “Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress,” Hepatology, vol. 29, no. 2, pp. 443–450, 1999.
[15]  M. Rentsch, S. Post, P. Palma, G. Lang, M. D. Menger, and K. Messmer, “Anti-ICAM-1 blockade reduces postsinusoidal WBC adherence following cold ischemia and reperfusion, but does not improve early graft function in rat liver transplantation,” Journal of Hepatology, vol. 32, no. 5, pp. 821–828, 2000.
[16]  T. P. Theruvath, Z. Zhong, R. T. Currin, V. K. Ramshesh, and J. J. Lemasters, “Endothelial nitric oxide synthase protects transplanted mouse livers against storage/reperfusion injury: role of vasodilatory and innate immunity pathways,” Transplantation Proceedings, vol. 38, no. 10, pp. 3351–3357, 2006.
[17]  E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959.
[18]  B. K. Gunawan, Z. X. Liu, D. Han, N. Hanawa, W. A. Gaarde, and N. Kaplowitz, “c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity,” Gastroenterology, vol. 131, no. 1, pp. 165–178, 2006.
[19]  Y. Wang, R. Singh, J. H. Lefkowitch, R. M. Rigoli, and M. J. Czaja, “Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway,” The Journal of Biological Chemistry, vol. 281, no. 22, pp. 15258–15267, 2006.
[20]  R. Ylikahri, “Metabolic effects of alcohol,” Duodecim, vol. 88, no. 3, pp. 247–257, 1972.
[21]  Z. Zhong, H. Connor, R. P. Mason et al., “Destruction of Kupffer cells increases survival and reduces graft injury after transplantation of fatty livers from ethanol-treated rats,” Liver Transplantation and Surgery, vol. 2, no. 5, pp. 383–387, 1996.
[22]  R. Scheig, “Effects of ethanol on the liver,” American Journal of Clinical Nutrition, vol. 23, no. 4, pp. 467–473, 1970.
[23]  S. Marubayashi, Y. Oshiro, T. Maeda et al., “Protective effect of monoclonal antibodies to adhesion molecules on rat liver ischemia-reperfusion injury,” Surgery, vol. 122, no. 1, pp. 45–52, 1997.
[24]  K. E. Caputo and D. A. Hammer, “Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion,” Biophysical Journal, vol. 96, no. 8, pp. 2989–3004, 2009.
[25]  H. Jaeschke and J. J. Lemasters, “Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury,” Gastroenterology, vol. 125, no. 4, pp. 1246–1257, 2003.
[26]  J. J. Lemasters and R. G. Thurman, “Reperfusion injury after liver preservation for transplantation,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 327–338, 1997.
[27]  H. Jaeschke, C. V. Smith, and J. R. Mitchell, “Hypoxic damage generates reactive oxygen species in isolated perfused rat liver,” Biochemical and Biophysical Research Communications, vol. 150, no. 2, pp. 568–574, 1988.
[28]  M. Ozaki, S. S. Deshpande, P. Angkeow et al., “Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo,” The FASEB Journal, vol. 14, no. 2, pp. 418–429, 2000.
[29]  T. G. Lehmann, M. D. Wheeler, R. F. Schwabe et al., “Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat,” Hepatology, vol. 32, no. 6, pp. 1255–1264, 2000.
[30]  T. G. Lehmann, M. D. Wheeler, R. Schoonhoven, H. Bunzendahl, R. J. Samulski, and R. G. Thurman, “Delivery of Cu/Zn-superoxide dismutase genes with a viral vector minimizes liver injury and improves survival after liver transplantation in the rat,” Transplantation, vol. 69, no. 6, pp. 1051–1057, 2000.
[31]  T. G. Lehmann, M. D. Wheeler, M. Froh et al., “Effects of three superoxide dismutase genes delivered with an adenovirus on graft function after transplantation of fatty livers in the rat,” Transplantation, vol. 76, no. 1, pp. 28–37, 2003.
[32]  Z. Zhong and J. J. Lemasters, “Role of free radicals in failure of fatty liver grafts caused by ethanol,” Alcohol, vol. 34, no. 1, pp. 49–58, 2004.
[33]  W. G. Siems, T. Grune, B. Beierl, H. Zollner, and H. Esterbauer, “The metabolism of 4-hydroxynonenal, a lipid peroxidation product, is dependent on tumor age in Ehrlich mouse ascites cells,” EXS, vol. 62, pp. 124–135, 1992.
[34]  J. J. Lemasters, “Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis,” Gastroenterology, vol. 129, no. 1, pp. 351–360, 2005.
[35]  T. P. Theruvath, Z. Zhong, P. Pediaditakis et al., “Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition,” Hepatology, vol. 47, no. 1, pp. 236–246, 2008.
[36]  Z. Zhong, G. E. Arteel, H. D. Connor et al., “Binge drinking disturbs hepatic microcirculation after transplantation: prevention with free radical scavengers,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 2, pp. 611–620, 1999.
[37]  T. P. Theruvath, Z. Zhong, V. K. Ramshesh, R. T. Currin, T. Karrasch, and J. J. Lemasters, “ICAM-1 upregulation in fatty livers of ethanol-treated donor mice promotes injury and sinusoidal leukocyte adherence after transplantation,” The FASEB Journal, vol. 21, article A1218, 2007.
[38]  T. P. Theruvath, K. D. Chavin, Z. Zhong, and J. J. Lemasters, “ICAM-1 upregulation in alcohol-induced fatty mouse livers promotes reperfusion injury after tramsplantation through increased oxidative stress and downstream leukocyte adherence,” Journal of the American College of Surgeons, vol. 209, no. 3, supplement, p. S60, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133