全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
HPB Surgery  2012 

Hepatocellular Adenoma: Evaluation with Contrast-Enhanced Ultrasound and MRI and Correlation with Pathologic and Phenotypic Classification in 26 Lesions

DOI: 10.1155/2012/418745

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. To review the contrast-enhanced ultrasonographic (CEUS) and magnetic resonance (MR) imaging findings in 25 patients with 26 hepatocellular adenomas (HCAs) and to compare imaging features with histopathologic results from resected specimen considering the new immunophenotypical classification. Material and Methods. Two abdominal radiologists reviewed retrospectively CEUS cineloops and MR images in 26 HCA. All pathological specimens were reviewed and classified into four subgroups (steatotic or HNF 1α mutated, inflammatory, atypical or β-catenin mutated, and unspecified). Inflammatory infiltrates were scored, steatosis, and telangiectasia semiquantitatively evaluated. Results. CEUS and MRI features are well correlated: among the 16 inflammatory HCA, 7/16 presented typical imaging features: hypersignal T2, strong arterial enhancement with a centripetal filling, persistent on delayed phase. 6 HCA were classified as steatotic with typical imaging features: a drop out signal, slight arterial enhancement, vanishing on late phase. Four HCA were classified as atypical with an HCC developed in one. Five lesions displayed important steatosis (>50%) without belonging to the HNF1α group. Conclusion. In half cases, inflammatory HCA have specific imaging features well correlated with the amount of telangiectasia and inflammatory infiltrates. An HCA with important amount of steatosis noticed on chemical shift images does not always belong to the HNF1α group. 1. Introduction Hepatocellular adenomas (HCAs) are uncommon primary benign tumours, usually found in young and middle-aged women, typically encountered in the presence of a long history of oral contraceptive use (OCs) [1]. HCAs can be solitary and are monoclonal tumours. They are considered now as a heterogeneous entity. Several pathomolecular features have recently been described [2, 3]. Based on two molecular criteria (HNF1α mutations and -catenin mutations) and an additional histological criterion, four subgroups can be defined: HNF1α mutated adenomas, β-catenin mutated adenomas, and inflammatory and/or telangiectatic adenomas; the fourth group has no particular morphological and molecular features. Each HCA subtype is potentially associated with different evolutionary risk factors. β-catenin mutated HCAs are more frequently associated with the development of hepatocellular carcinoma (HCC) whereas inflammatory/telangiectatic HCAs have a significant risk of haemorrhage and also a slight risk of degeneration [4]. The noninvasive differentiation of HCA from other benign tumours (especially with focal

References

[1]  L. Giannitrapani, M. Soresi, E. La Spada, M. Cervello, N. D'Alessandro, and G. Montalto, “Sex hormones and risk of liver tumor,” Annals of the New York Academy of Sciences, vol. 1089, pp. 228–236, 2006.
[2]  S. Rebouissou, P. Bioulac-Sage, and J. Zucman-Rossi, “Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma,” Journal of Hepatology, vol. 48, no. 1, pp. 163–170, 2008.
[3]  P. Bioulac-Sage, J. Frédéric Blanc, S. Rebouissou, C. Balabaud, and J. Zucman-Rossi, “Genotype phenotype classification of hepatocellular adenoma,” World Journal of Gastroenterology, vol. 13, no. 19, pp. 2649–2654, 2007.
[4]  O. Farges, N. Ferreira, S. Dokmak, J. Belghiti, P. Bedossa, and V. Paradis, “Changing trends in malignant transformation of hepatocellular adenoma,” Gut, vol. 60, no. 1, pp. 85–89, 2011.
[5]  H. Laumonier, P. Bioulac-Sage, C. Laurent, J. Zucman-Rossi, C. Balabaud, and H. Trillaud, “Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification,” Hepatology, vol. 48, no. 3, pp. 808–818, 2008.
[6]  H. Trillaud, J. M. Bruel, P. J. Valette et al., “Characterization of focal liver lesions with SonoVue-enhanced sonography: international multicenter-study in comparison to CT and MRI,” World Journal of Gastroenterology, vol. 15, no. 30, pp. 3748–3756, 2009.
[7]  P. Bioulac-Sage, “Les tumeurs hepato-cellulaires benignes, donnees morphologiques et moleculaires: une nouvelle classification,” Acta Endoscopica, vol. 36, no. 3, pp. 335–340, 2006.
[8]  J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[9]  V. Paradis, A. Champault, M. Ronot et al., “Telangiectatic adenoma: an entity associated with increased body mass index and inflammation,” Hepatology, vol. 46, no. 1, pp. 140–146, 2007.
[10]  P. Bioulac-Sage, H. Laumonier, G. Couchy et al., “Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience,” Hepatology, vol. 50, no. 2, pp. 481–489, 2009.
[11]  S. Dokmak, V. Paradis, V. Vilgrain et al., “A single-center surgical experience of 122 patients with single and multiple hepatocellular adenomas,” Gastroenterology, vol. 137, no. 5, pp. 1698–1705, 2009.
[12]  L. Barthelmes and I. S. Tait, “Liver cell adenoma and liver cell adenomatosis,” HPB, vol. 7, no. 3, pp. 186–196, 2005.
[13]  M. Lewin, A. Handra-Luca, L. Arrivé et al., “Liver adenomatosis: classification of MR imaging features and comparison with pathologic findings,” Radiology, vol. 241, no. 2, pp. 433–440, 2006.
[14]  H. Honda, K. Kaneko, T. Maeda et al., “Small hepatocellular carcinoma on magnetic resonance imaging: relation of signal intensity to angiographic and clinicopathologic findings,” Investigative Radiology, vol. 32, no. 3, pp. 161–168, 1997.
[15]  P. Attal, V. Vilgrain, G. Brancatelli et al., “Telangiectatic focal nodular hyperplasia: US, CT, and MR imaging findings with histopathologic correlation in 13 cases,” Radiology, vol. 228, no. 2, pp. 465–472, 2003.
[16]  E. A. Psatha, R. C. Semelka, D. Armao, J. T. Woosley, Z. Firat, and G. Schneider, “Hepatocellular adenomas in men: MRI findings in four patients,” Journal of Magnetic Resonance Imaging, vol. 22, no. 2, pp. 258–264, 2005.
[17]  O. Farges and S. Dokmak, “Malignant transformation of liver adenoma: an analysis of the literature,” Digestive Surgery, vol. 27, no. 1, pp. 32–38, 2010.
[18]  J. L. Deneve, T. M. Pawlik, S. Cunningham et al., “Liver cell adenoma: a multicenter analysis of risk factors for rupture and malignancy,” Annals of Surgical Oncology, vol. 16, no. 3, pp. 640–648, 2009.
[19]  J. Zucman-Rossi, E. Jeannot, J. T. van Nhieu et al., “Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC,” Hepatology, vol. 43, no. 3, pp. 515–524, 2006.
[20]  S. M. Hussain, I. C. van den Bos, R. S. Dwarkasing, J. W. Kuiper, and J. den Hollander, “Hepatocellular adenoma: findings at state-of-the-art magnetic resonance imaging, ultrasound, computed tomography and pathologic analysis,” European Radiology, vol. 16, no. 9, pp. 1873–1886, 2006.
[21]  L. Grazioli, M. P. Federle, T. Ichikawa, E. Balzano, M. Nalesnik, and J. Madariaga, “Liver adenomatosis: clinical, histopathologic, and imaging findings in 15 patients,” Radiology, vol. 216, no. 2, pp. 395–402, 2000.
[22]  R. Vetel?inen, D. Erdogan, W. de Graaf et al., “Liver adenomatosis: re-evaluation of aetiology and management,” Liver International, vol. 28, no. 4, pp. 499–508, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133