Pulmonary rehabilitation is an effective treatment for people with chronic obstructive pulmonary disease. However, access to these services is limited especially in rural and remote areas. Telerehabilitation has the potential to deliver pulmonary rehabilitation programs to these communities. The aim of this study was threefold: to establish the technical feasibility of transmitting real-time pulse oximetry data, determine the validity of remote measurements compared to conventional face-to-face measures, and evaluate the participants’ perception of the usability of the technology. Thirty-seven healthy individuals participated in a single remote pulmonary rehabilitation exercise session, conducted using the eHAB telerehabilitation system. Validity was assessed by comparing the participant's oxygen saturation and heart rate with the data set received at the therapist’s remote location. There was an 80% exact agreement between participant and therapist data sets. The mean absolute difference and Bland and Altman’s limits of agreement fell within the minimum clinically important difference for both oxygen saturation and heart rate values. Participants found the system easy to use and felt confident that they would be able to use it at home. Remote measurement of pulse oximetry data for a pulmonary rehabilitation exercise session was feasible and valid when compared to conventional face-to-face methods. 1. Introduction Chronic obstructive pulmonary disease (COPD) is a progressive lung disease which is characterized by airway obstruction and lung parenchyma destruction. Patients may experience dyspnoea or shortness of breath, a persistent cough with sputum production, decreased exercise tolerance and decreased quality of life [1, 2]. Globally, COPD is the fourth most common cause of death and is predicted by the World Health Organisation to be a major health concern in the coming decade [3]. In Australia, 1.2 million people are estimated to have moderate-to-severe COPD (GOLD stages II–IV). However, the true number is potentially much higher as COPD is commonly underdiagnosed [4, 5]. The economic burden of COPD is substantial. The total cost of living with COPD (including nonmonetary costs) is estimated to be $83?000 AUD per person each year [6, 7]. As the severity of COPD greatly impacts the cost of care, providing early diagnosis and effective management of the individual is an essential component in reducing its economic impact [5, 8–10]. One form of effective treatment is pulmonary rehabilitation (PR). PR is a multidisciplinary approach which incorporates
References
[1]
T. J. Wilt, D. Niewoehner, R. MacDonald, and R. L. Kane, “Management of stable chronic obstructive pulmonary disease: a systematic review for a clinical practice guideline,” Annals of Internal Medicine, vol. 147, no. 9, pp. 639–653, 2007.
[2]
Global Initiative for Chronic Obstructive Lung Disease, Global Strategy For the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, Updated 2008, Global Initiative for Chronic Obstructive Lung Disease (GOLD), 2008.
[3]
J. Bousquet and N. Khaltaev, “Global surveillance, prevention and control of chronic respiratory diseases: a compreshensive approach,” in A World Where all People Breathe Freely, World Health Organization, Geneva, Switzerland, 2007.
[4]
A. S. Buist, M. A. McBurnie, W. M. Vollmer et al., “International variation in the prevalence of COPD (The BOLD Study): a population-based prevalence study,” The Lancet, vol. 370, no. 9589, pp. 741–750, 2007.
[5]
D. M. Mannino and S. Braman, “The epidemiology and economics of chronic obstructive pulmonary disease,” Proceedings of the American Thoracic Society, vol. 4, no. 7, pp. 502–506, 2007.
[6]
Access Economics, Economics Impact of COPD and Cost Effective Solutions, Australian Lung Foundation, Canberra, Australia, 2008.
[7]
C. D. Mathers, E. T. Vos, C. E. Stevenson, and S. J. Begg, “The burden of disease and injury in Australia,” Bulletin of the World Health Organization, vol. 79, no. 11, pp. 1076–1084, 2001.
[8]
J. M. FitzGerald, J. M. Haddon, C. Bradley-Kennedy et al., “Resource use study in COPD (RUSIC): a prospective study to quantify the effects of COPD exacerbations on health care resource use among COPD patients,” Canadian Respiratory Journal, vol. 14, no. 3, pp. 145–152, 2007.
[9]
S. A. Jansson, F. Andersson, S. Borg, A. Ericsson, E. J?nsson, and B. Lundb?ck, “Costs of COPD in Sweden according to disease severity,” Chest, vol. 122, no. 6, pp. 1994–2002, 2002.
[10]
M. D. Landry, E. Hamdan, S. Al Mazeedi, and D. Brooks, “The precarious balance between 'supply' and 'demand' for health care: the increasing global demand for rehabilitation service for individuais living with chronic obstructive pulmonary disease,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 3, no. 3, pp. 393–396, 2008.
[11]
L. Nici, C. Donner, E. Wouters et al., “American thoracic society/European respiratory society statement on pulmonary rehabilitation,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 12, pp. 1390–1413, 2006.
[12]
Y. Lacasse, R. Goldstein, T. J. Lasserson, and S. Martin, “Pulmonary rehabilitation for chronic obstructive pulmonary disease,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003793, 2006.
[13]
A. M. Fernández, J. Pascual, C. Ferrando, A. Arnal, I. Vergara, and V. Sevila, “Home-based pulmonary rehabilitation in very severe COPD: is it safe and useful?” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 29, no. 5, pp. 325–331, 2009.
[14]
L. Nici, J. Raskin, C. L. Rochester, et al., “Pulmonary rehabilitation: what we know and what we need to know,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 29, no. 3, pp. 141–151, 2009.
[15]
G. F. Salman, M. C. Mosier, B. W. Beasley, and D. R. Calkins, “Rehabilitation for patients with chronic obstructive pulmonary disease: meta-analysis of randomized controlled trials,” Journal of General Internal Medicine, vol. 18, no. 3, pp. 213–221, 2003.
[16]
M. A. Puhan, M. Scharplatz, T. Troosters, and J. Steurer, “Respiratory rehabilitation after acute exacerbation of COPD may reduce risk for readmission and mortality—a systematic review,” Respiratory Research, vol. 6, article 54, 2005.
[17]
D. K. McKenzie, M. Abramson, A. J. Crockett, et al., “The COPDX Plan: Australian and New Zealand Guidelines for the management of Chronic Obstructive Pulmonary Disease,” 2009, http://www.copdx.org.au/.
[18]
J. Bourbeau and S. J. Bartlett, “Patient adherence in COPD,” Thorax, vol. 63, no. 9, pp. 831–838, 2008.
[19]
M. J. Fischer, M. Scharloo, J. J. Abbink et al., “Participation and drop-out in pulmonary rehabilitation: a qualitative analysis of the patient's perspective,” Clinical Rehabilitation, vol. 21, no. 3, pp. 212–221, 2007.
[20]
P. Young, M. Dewse, W. Fergusson, and J. Kolbe, “Respiratory rehabilitation in chronic obstructive pulmonary disease: predictors of nonadherence,” European Respiratory Journal, vol. 13, no. 4, pp. 855–859, 1999.
[21]
J. A. Ward, G. Akers, D. G. Ward et al., “Feasibility and effectiveness of a pulmonary rehabilitation programme in a community hospital setting,” British Journal of General Practice, vol. 52, no. 480, pp. 539–542, 2002.
[22]
A. Keating, A. L. Lee, and A. E. Holland, “Lack of perceived benefit and inadequate transport influence uptake and completion of pulmonary rehabilitation in people with chronic obstructive pulmonary disease: a qualitative study,” Journal of Physiotherapy, vol. 57, no. 3, pp. 183–190, 2011.
[23]
J. P. Finnerty, I. Keeping, I. Bullough, and J. Jones, “The effectiveness of outpatient pulmonary rehabilitation in chronic lung disease: a randomized controlled trial,” Chest, vol. 119, no. 6, pp. 1705–1710, 2001.
[24]
C. Bulley, M. Donaghy, S. Howden, L. Salisbury, S. Whiteford, and E. Mackay, “A prospective qualitative exploration of views about attending pulmonary rehabilitation,” Physiotherapy Research International, vol. 14, no. 3, pp. 181–192, 2009.
[25]
T. M. Rasekaba, E. Williams, and B. Hsu-Hage, “Can a chronic disease management pulmonary rehabilitation program for COPD reduce acute rural hospital utilization?” Chronic Respiratory Disease, vol. 6, no. 3, pp. 157–163, 2009.
[26]
Australian Bureau of Statistics, Year Book Australia—Geographical Distribution of the Population, Cat. No. 1301. 0, Canberra, Australia, 2008.
[27]
C. De Angelis, S. Bunker, and A. Schoo, “Exploring the barriers and enablers to attendance at rural cardiac rehabilitation programs,” Australian Journal of Rural Health, vol. 16, no. 3, pp. 137–142, 2008.
[28]
B. Fauroux, P. Howard, and J. F. Muir, “Home treatment for chronic respiratory insufficiency: the situation in Europe in 1992,” European Respiratory Journal, vol. 7, no. 9, pp. 1721–1726, 1994.
[29]
M. J. Thomas, J. Simpson, R. Riley, and E. Grant, “The impact of home-based physiotherapy interventions on breathlessness during activities of daily living in severe COPD: a systematic review,” Physiotherapy, vol. 96, no. 2, pp. 108–119, 2010.
[30]
M. Ghanem, E. A. ELaal, M. Mehany, and K. Tolba, “Home-based pulmonary rehabilitation program: effect on exercise tolerance and quality of life in chronic obstructive pulmonary disease patients,” Annals of Thoracic Medicine, vol. 5, no. 1, pp. 18–25, 2010.
[31]
D. S. R. Vieira, F. Maltais, and J. Bourbeau, “Home-based pulmonary rehabilitation in chronic obstructive pulmonary disease patients,” Current Opinion in Pulmonary Medicine, vol. 16, no. 2, pp. 134–143, 2010.
[32]
P. A. Ades, F. J. Pashkow, G. Fletcher, I. L. Pina, L. R. Zohman, and J. R. Nestor, “A controlled trial of cardiac rehabilitation in the home setting using electrocardiographic and voice transtelephonic monitoring,” American Heart Journal, vol. 139, no. 3, pp. 543–548, 2000.
[33]
E. Kouidi, A. Farmakiotis, N. Kouidis, and A. Deligiannis, “Transtelephonic electrocardiographic monitoring of an outpatient cardiac rehabilitation programme,” Clinical Rehabilitation, vol. 20, no. 12, pp. 1100–1104, 2006.
[34]
D. K. Shaw, K. E. Sparks, and H. S. Jennings III, “Transtelephonic exercise monitoring: a review,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 18, no. 4, pp. 263–270, 1998.
[35]
M. J. Rosen, “Telerehabilitation,” NeuroRehabilitation, vol. 12, no. 1, pp. 11–26, 1999.
[36]
T. Raza, M. Joshi, R. M. Schapira, and Z. Agha, “Pulmonary telemedicine-A model to access the subspecialist services in underserved rural areas,” International Journal of Medical Informatics, vol. 78, no. 1, pp. 53–59, 2009.
[37]
A. J. Hill, “Assessment of acquired neurogenic communication disorders in adults using a telerehabilitation application,” in School of Health and Rehabilitation Sciences, p. 306, University of Queensland, Brisbane, Australia, 2008.
[38]
D. Theodoros and T. Russell, “Telerehabilitation: current perspectives,” Studies in Health Technology and Informatics, vol. 131, pp. 191–209, 2008.
[39]
K. K. Giuliano and T. L. Higgins, “New-generation pulse oximetry in the care of critically ill patients,” American Journal of Critical Care, vol. 14, no. 1, pp. 26–39, 2005.
[40]
G. F. Fletcher, A. J. Chiaramida, and M. R. LeMay, “Telephonically-monitored home exercise early after coronary artery bypass surgery,” Chest, vol. 86, no. 2, pp. 198–202, 1984.
[41]
D. K. Shaw, “Overview of telehealth and its application to cardiopulmonary physical therapy,” Cardiopulmonary Physical Therapy Journal, vol. 20, no. 2, pp. 13–18, 2009.
[42]
J. Finkelstein, M. R. Cabrera, and G. Hripcsak, “Internet-based home asthma telemonitoring: can patients handle the technology?” Chest, vol. 117, no. 1, pp. 148–155, 2000.
[43]
J. Finkelstein, G. O'Connor, and R. H. Friedmann, “Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self-care,” Studies in Health Technology and Informatics, vol. 84, no. 1, pp. 810–814, 2001.
[44]
S. G. Marshall, D. K. Shaw, G. L. Honles, and K. E. Sparks, “Interdisciplinary approach to the rehabilitation of an 18-year-old patient with bronchopulmonary dysplasia, using telerehabilitation technology,” Respiratory Care, vol. 53, no. 3, pp. 346–350, 2008.
[45]
R. Cady, S. Finkelstein, B. Lindgren et al., “Exploring the translational impact of a home telemonitoring intervention using time-motion study,” Telemedicine Journal and E-Health, vol. 16, no. 5, pp. 576–584, 2010.
[46]
S. H. Hung, H. C. Tseng, W. H. Tsai, H. H. Lin, J. H. Cheng, and Y. M. Chang, “COPD—endurance training via mobile phone,” Annual Symposium Proceedings, p. 985, 2007.
[47]
T. Vontetsianos, P. Giovas, T. Katsaras et al., “Telemedicine-assisted home support for patients with advanced chronic obstructive pulmonary disease: preliminary results after nine-month follow-up,” Journal of Telemedicine and Telecare, vol. 11, no. 1, pp. 86–88, 2005.
[48]
J. G. W. Burdon, E. F. Juniper, and K. J. Killian, “The perception of breathlessness in asthma,” American Review of Respiratory Disease, vol. 126, no. 5, pp. 825–828, 1982.
[49]
J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986.
[50]
J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Statistical Methods in Medical Research, vol. 8, no. 2, pp. 135–160, 1999.
[51]
A. G. Copay, S. D. Glassman, B. R. Subach, S. Berven, T. C. Schuler, and L. Y. Carreon, “Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and Pain Scales,” Spine Journal, vol. 8, no. 6, pp. 968–974, 2008.
[52]
I. M. Balfour-Lynn, S. A. Prasad, A. Laverty, et al., “A step in the right direction: assessing exercise tolerance in cystic fibrosis,” Pediatric Pulmonology, vol. 25, no. 4, pp. 278–284, 1998.
[53]
NONIN Medical, “Onyx II Model 9560 Bluetooth Fingertip Pulse Oximeter OEM Specification and Technical Information,” 2009, http://www.nonin.com/PulseOximetry/Fingertip/Onyx9560.
[54]
M. Sabesan and T. Risch, “Adaptive parallelization of queries over dependent web service calls,” in Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE '09), pp. 1725–1732, Shanghai, China, April 2009.
[55]
T. Hoffmann and T. Russell, “Pre-admission orthopaedic occupational therapy home visits conducted using the internet,” Journal of Telemedicine and Telecare, vol. 14, no. 2, pp. 83–87, 2008.
[56]
G. Constantinescu, D. Theodoros, T. Russell, E. Ward, S. Wilson, and R. Wootton, “Assessing disordered speech and voice in Parkinson's disease: a telerehabilitation application,” International Journal of Language and Communication Disorders, vol. 45, no. 6, pp. 630–644, 2010.
[57]
T. Russell, P. Truter, R. Blumke, and B. Richardson, “The diagnostic accuracy of telerehabilitation for nonarticular lower-limb musculoskeletal disorders,” Telemedicine Journal and E-Health, vol. 16, no. 5, pp. 585–594, 2010.
[58]
R. Elford, H. White, R. Bowering et al., “A randomized, controlled trial of child psychiatric assessments conducted using videoconferencing,” Journal of Telemedicine and Telecare, vol. 6, no. 2, pp. 73–82, 2000.
[59]
E. D. Lemaire and Y. Jeffreys, “Low-bandwidth telemedicine for remote orthotic assessment,” Prosthetics and Orthotics International, vol. 22, no. 2, pp. 155–167, 1998.
[60]
L. Wakeford, P. P. Wittman, M. W. White, and M. R. Schmeler, “Telerehabilitation position paper,” American Journal of Occupational Therapy, vol. 59, no. 6, pp. 656–660, 2005.
[61]
R. T. Apteker, J. A. Fisher, V. S. Kisimov, and H. Neishlos, “Video acceptability and frame rate,” IEEE Multimedia, vol. 2, no. 3, pp. 32–40, 1995.
[62]
F. S. Mair, P. Goldstein, C. May et al., “Patient and provider perspectives on home telecare: preliminary results from a randomized controlled trial,” Journal of Telemedicine and Telecare, vol. 11, supplement 1, pp. 95–97, 2005.