OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
页岩气离散裂缝网络模型数值模拟方法研究
Keywords: 离散裂缝模型,吸附&mdash,解吸附,knudsen扩散效应,滑脱效应,扩散
Abstract:
?页岩气开发已经成为当今世界各国的焦点,然而关于页岩气的理论研究还处于起步阶段。目前关于页岩气数值模拟方法的应用大多局限于常规油气藏数值模拟所采用的连续介质模型,但页岩气藏天然裂缝发育,非均质性强,连续介质模型不能准确表征页岩气特有的渗流特征。基于离散裂缝网络模型(dfn),从渗流理论出发,建立页岩气离散裂缝网络渗流数学模型,表征页岩气在干酪根中的扩散效应,孔壁的吸附—解吸附效应,纳米孔隙中的滑脱效应、knudsen扩散效应以及裂缝内的非达西渗流规律。利用有限差分法求解渗流方程并进行敏感性分析。最终得出:①页岩气不同生产阶段,产气机理不同|②滑脱效应和knudsen扩散效应对页岩气产能影响较大,而吸附—解吸附效应和干酪根中的扩散效应对延长页岩气稳产期起到关键作用。通过和现有页岩气数值模拟软件cmg(2012版)计算结果对比,该模型在模拟裂缝性页岩气藏时更符合实际情况,为页岩气数值模拟的研究奠定了基础。?
References
[1] | milidong,jianghanqiao,lijunjian,etal.mechanismofthegasdiffusioninshalereservoirs[j].petroleumgeology&oilfielddevelopmentindaqing,2014,33(1):154-159.[糜利栋,姜汉桥,李俊键,等.页岩储层气体扩散机理[j].大庆石油地质与开发,2014,33(1):154-159.]
|
[2] | lizhifeng,lizhiping,miaolili,etal.gasflowcharacteristicsinnanoscaleporesofshalegas[j].naturalgasgeoscience,2013,24(5):1042-1047.[李智锋,李治平,苗丽丽,等.页岩气藏纳米孔隙气体渗流特征分析[j].天然气地球科学,2013,24(5):1042-1047.]
|
[3] | yangshenglai,weijunzhi.thereservoirphysics[m].beijing:thepetroleumindustrypress,2004:18-22,155-158.[杨胜来,魏俊之.油层物理学[m].北京:石油工业出版,2004:18-22,155-158.]
|
[4] | gaohequn,caohaihong,dinganxu,etal.isothermadsorptioncharacteristicofmarineandcontinentalshaleanditscontrollingfactors[j].naturalgasgeoscience,2013,24(6):1290-1297.[高和群,曹海虹,丁安徐,等.海相页岩和陆相页岩等温吸附特性及控制因素[j].天然气地球科学,2013,24(6):1290-1297.]
|
[5] | birdrb,stewartwe,lightfooten.transportphenomena(2)[m].america:johnwiley&sons,inc.,hoboken,nj.2007:48-53.
|
[6] | javadpourf.nanoporesandapparentpermeabilityofgasflowinmudrocks:shalesandsiltstone[j].journalofcanadianpetroleumtechnology,2009,48(8):16-19.
|
[7] | shabrov,torrescv,javadpourf.numericalsimulationofshale-gasproductionfrompore-scalemodelingofslip-flow,knudsendiffusion,andlangmuirdesorptiontoreservoirmodelingofcompressiblefluid[c].spe-144355-ms-p,2011:1-5.
|
[8] | imadbrohi,mehranpooladi-darvish,robertoaguilera.modelingfracturedhorizontalwellsasdualporositycompositereservoirs-applicationtotightgas,shalegasandtightoilcases[c].spe-144057-ms-p,2011:1-18.
|
[9] | vivekswami.shalegasreservoirmodelingfromnanoporestolaboratory[c].spe-163065-stu,2012:1-5.
|
[10] | vivekswami,settaria.porescalegasflowmodelforshalegasreservoir[c].spe-155756-ms-p,2012:1-11.
|
[11] | chenqiang,kangyili,youlijun,etal.micro-porestructureofgasshaleanditseffectongasmasstransfer[j].naturalgasgeoscience,2013,24(6):1298-1304.[陈强,康毅力,游利军,等.页岩微孔结构及其对气体传质方式影响[j].天然气地球科学,2013,24(6):1298-1304.]
|
[12] | wangjie,qinjianzhong,raodan,etal.microstructureandsimulationexperimentsofextractedgascapabilityindifferenttypesofshale[j].naturalgasgeoscience,2013,24(4):652-658.[王杰,秦建中,饶丹,等.不同类型页岩富集烃气能力模拟实验及微观结构特征研究[j].天然气地球科学,2013,24(4):652-658.]
|
[13] | javadpourf,fisherd,unsworthm.nanoscalegasflowinshalegassediments[j].journalofcanadianpetroleumtechnology,2007,46(10):55-59.
|
[14] | shabrov,torrescv,sepehrnoorik.forecastinggasproductioninorganicshalewiththecombinednumericalsimulationofgasdiffusioninkerogen,langmuirdesorptionfromkerogensurfaces,andadvectioninnanopores[c].spe-159250-ms-p,2012:1-5.
|
[15] | azompn,javadpourf.dual-continuummodelingofshaleandtightgasreservoirs[c].spe-159584-ms-p,2012:1-8.
|
[16] | mckoyml,samswn.tightgasreservoirsimulation:modelingdiscreteirregularstrata-boundfracturenetworksandnetworkflow,includingdynamicrechargefromthematrix[m].nfflowdevelopmentteam,2010:43-59.
|
[17] | boyleej,samswn.nnflowareservoirsimulatorincorporatingexplicitfractures[c].spe-153890-ms-p,2012:1-5.
|
[18] | ruthvendm.principlesofadsorptionandadsorptionprogress[m].canada:wiley-interscience,1984:86-89.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|